Iranian Journal of Biosvstem Engineering

Homepage: http://ijbse.ut.ac.ir

Identifying and classifying cow types based on spinal end deviation using

Mohsen Daneshmand Vaziri!

machine learning

| Abdollah Imanmehr?>|
Mohsen Heidarisoltanabadi?

1. Researcher, Agricultural Engineering Research Department, Isfahan Agricultural and Natural Resources Research and

Education Center, AREEO, Isfahan, Iran. E-mail: m.d.vaziri@gmail.com

2. Corresponding Author, Assistant professor, Agricultural Engineering Research Department, Isfahan Agricultural and
Natural Resources Research and Education Center, AREEO, Isfahan, Iran. E-mail: imanmehr2000@gmail.com
3. Associated professor, Agricultural Engineering Research Department, Isfahan Agricultural and Natural Resources

Research and Education Center, AREEO, Isfahan, Iran. E-mail: mheisol@gmail.com

Article Info

ABSTRACT

Avrticle type: Research Article

Article history:

Received: July. 19, 2025
Revised: Aug. 30, 2025
Accepted: Sep. 16, 2025
Published online: Summer 2025

Keywords:

Body condition scoring,

Cow rump curvature,

Machine learning algorithms,
Convolutional neural network,
Deep learning.

In dairy farms, machine learning operations can be used to identify and classify cow types
based on body condition scoring (BCS) using features extracted from images. In particular,
machine learning algorithms can analyze the curvature of the spine, often by identifying key
points and fitting a line or curve, to distinguish between different breeds of cattle and assess
their condition. In this study, machine learning models that have been frequently used in
computer science in recent years, including SVM, KNN, and CNN, were used in conjunction
with a pre-trained deep learning network Resnet50 to enhance the success of the architectures.
In each of the algorithms, image features were extracted, registered, and merged to identify
the type of cows, and finally, the pre-trained CNN algorithm based on deep learning was able
to correctly identify the type of cow with the highest accuracy (93 percent). Therefore, by
combining this processing system with the imaging mechanism, it is possible to identify and
classify cows based on various states and physical characteristics in cattle environments in a
shorter, simpler, and more user-friendly time. This approach eliminates the need for manual
extraction of livestock features, reduces the use of human resources, and achieves improved
recognition accuracy.
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EXTENDED ABSTRACT

Introduction

Dairy cow body condition scoring (BCS) is a vital management practice used to assess nutritional status,
health, and productivity potential. Traditionally, BCS is performed manually by experienced evaluators who
rely on visual and tactile cues. However, manual scoring is subjective, time-consuming, and prone to variability
and human error, making it impractical for large-scale operations. Advances in computer vision and machine
learning have enabled automated BCS systems, offering consistent and objective evaluations. A critical visual
marker for BCS estimation is the curvature or deviation of the rump area (the terminal part of the spine). This
morphological feature is closely related to body fat reserves and musculoskeletal health. Prior research has
used 2D and 3D imaging with regression analysis to automate BCS. Yet many approaches require expensive
3D equipment or involve complex manual feature engineering. Recent developments in convolutional neural
networks (CNNSs), transfer learning, and pre-trained architectures such as ResNet50 have shown promise in
automating feature extraction and classification tasks with high accuracy. The present study aims to design
and evaluate a practical, image-based, automated system for intelligent detection and classification of cow
types based on rump deviation using machine learning algorithms. The ultimate goal is to provide dairy farms
with a low-cost, user-friendly, and real-time tool for BCS-related phenotyping to improve herd management
efficiency.

Method

The study employed three machine learning algorithms—Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), and a Convolutional Neural Network (CNN) leveraging the ResNet50 architecture—for
classifying cows into three types based on rump curvature: upward deviation (A type), downward deviation
(B type), and horizontal (C type). A dataset of 150 images was collected from various farms, with 50 images
per type, captured using standard digital cameras and smartphones. Images were preprocessed by cropping to
isolate the rump area and were labeled and sorted into folders by type. The dataset was split into training,
validation, and test sets in an 8:1:1 ratio. Feature extraction for SVM and KNN was performed using ResNet50
as a fixed feature extractor. CNN training used ResNet50 with fine-tuned layers for classification. Experiments
were implemented in MATLAB R2021b. Evaluation metrics included accuracy, precision, recall (sensitivity),
F1 score, confusion matrices, intersection over union (loU), and mean average precision (mAP). For each
algorithm, predictions on the test set were compared to ground-truth labels to compute performance metrics.

Results

The KNN classifier achieved an overall accuracy of 82%, with an F1 score averaging 81% across classes.
Its confusion matrix revealed relatively high false positives, especially between A and C types, resulting in
lower overlap scores (mean loU ~67%). The SVM model showed improved performance, achieving 86%
accuracy and an average F1 score of 85%, with better precision-recall balance and higher loU (~75%). The
CNN model using fine-tuned ResNet50 outperformed the others, achieving 91% accuracy, 93% precision, 90%
recall, and an F1 score of 90%, with the highest mean loU (~82%). Confusion matrices demonstrated that
CNN produced the lowest misclassification rates among the three algorithms. CNN's high overlap values
indicated strong alignment between predicted and actual classes, and its superior F1 score reflected balanced
precision and recall. These results underscore the model's ability to extract subtle image features relevant to
rump curvature and BCS-related phenotypes. Compared to prior studies reporting accuracies in the 82-97%
range (using depth cameras, attention mechanisms, or multimodal data), this approach demonstrated
comparable or better performance with simple 2D imaging and transfer learning. The system reduces manual
feature engineering, enables real-time classification, and supports scalable deployment in dairy farms.

Conclusion

This study demonstrates the feasibility and effectiveness of using machine learning—particularly CNN
with ResNet50—for automated classification of cow types based on rump curvature, serving as a proxy for
body condition scoring. Among the tested methods, CNN—-ResNet50 achieved the highest accuracy (91%) and
F1 score (90%), outperforming KNN and SVM classifiers. The proposed system offers a practical, low-cost
solution that eliminates the need for manual scoring, reduces labor, minimizes subjective error, and facilitates
real-time herd management. Such tools can help dairy farmers make timely decisions on feeding and health
interventions, ultimately improving productivity and animal welfare. Future work could expand the dataset,
incorporate multimodal imaging, and deploy the model in field conditions to validate robustness and
generalizability. Overall, the study confirms that deep learning with transfer learning on 2D RGB images can
reliably support precision livestock farming by automating BCS estimation from visually salient anatomical
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markers like rump curvature.
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