Effect of Production Conditions on Efficiency and Properties of Niosomes Incorporating Natural Canthaxanthin

Document Type : Research Paper

Authors

1 Ph.D. student, Department of Food Science and Technology, College of Agriculture, Tehran University

2 Professor, Department of Food Science and Technology, College of Agriculture, Tehran University, Karaj

3 Professor, Department of Food Science and Technology, College of Agriculture, Tehran University, Karaj, 02632248804, postal code

Abstract

In this study canthaxanthin was produced by Dietzia natronolimnaea HS1 and used for incorporation in niosomes after extraction. Effect of rotational speed of rotary vacuum evaporator flask (100 and 150 rpm), canthaxanthin concentration (0, 1 and 2 microgram/ milliliter), concentration of poly ethylene glycol 400 (0, 0.1 and 0.2 %), surfactant type (Tween 60 and 80, Span 60 and 80) and surfactant to cholesterol micromolar ratio (100:100, 120:80, 140:60) on efficiency and noisome properties were evaluated. The results showed that rotational speed of 150 rpm, canthxanthin concentration of 2 g/ml, polyethylene glycol 400 concentration of 0.2% and surfactant to cholesterol ratio of 100:100 produced niosomes with higher efficiency and smaller size. Utilization of span 60 with similar efficiency to span 80, smaller and more uniform vesicle size using ethanol as solvent was preferred.

Keywords

Main Subjects


Abdelbary, G. & El-gendy, N. (2008). Niosome-Encapsulated Gentamicin for Ophthalmic Controlled Delivery, AAPS Pharmaceutical Science and Technology, 9(3), 740-747.
Aggarwal, D. & Kaur, I. P. (2005). Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system, International Journal of Pharmaceutics, 290, 155–159.
Akhilesh, D. Bini K. B. & Kamath, J. V. (2012). Review on span-60 based non-ionic surfactant vesicles (niosomes) as novel drug delivery, International Journal of Research inPharmaceutical and Biomedical Sciences, 3(1), 6-12.
Bansal, S. Aggarwal, G. Chandel, P. & Harikumar, S. L. (2013). Design and development of cefdinir niosomes for oral delivery. Journal of Pharmacy & Bioallied Sciences, 5(4), 318–325.
Clark, T. H. Faustman, C. Chan, W. K. M. Furr, H. C. & Riesen, J.W. (1999). Canthaxanthin as an antioxidant in a liposome model system and in minced patties from rainbow trout, Journal of Food Science, 64(6), 982-986.
Cortesi, R. Esposito, E. Corradini, F. Sivieri, E. Drechsler, M. Rossi, A. Scatturin, A. & Menegatti, E. (2007). Non-phospholipid vesicles as carriers for peptides and proteins: production, characterization and stability studies, International Journal of Pharmaceutics, 339, 52–60.
Cózar-Bernal, M.J. Rabasco, A.M. González-Rodríguez, M.L. (2013). Development and Validation of a high performance chromatographic method for determining Sumatriptan in niosomes, Journal of Pharmaceutical and Biomedical Analysis, 72, 251– 260.
Elliott, J. A. (2009). PEGylation of Niosomes, PhD dissertation, University of South Florida.
Esfahani-Mashhour, M. Moravej, V. Mehrabani-Yeganeh, H. & Razavi, S. H. (2009). Evaluation of coloring potential of Dietzia natronolimnaea biomass as source of canthaxanthin for egg yolk pigmentation, Asian-Australian Journal of Animal Science, 22(2), 254 – 259.
Firthouse, P. U. M. Halith, S. M. Wahab, S. U. Sirajudeen, M. & Mohideen. S. K. (2011). Formulation and Evaluation of Miconazole Niosomes, International Journal of PharmTech Research, 3(2), 1019-1022.
Gangwar, M. Singh, R. Goel, RK & Nath, G. (2012). Recent advances in various emerging vesicular systems: an overview, Asian Pacific Journal of Tropical Biomedicine, S1176-S1188.
Gharibzahedi, S. M. T. Razavi, S. H. Mousavi, S. M. & Moayedi, V. (2012). High efficiency canthaxanthin production by a novel mutant isolated from Dietzia natronolimnaea HS-1 using central composite design analysis, Industrial Crops and Products, 40, 345– 354.
Hojjati, M. Razavi, S. H. Rezaei, K. & Gilani, K. (2012). Stabilization of canthaxanthin produced by Dietzia natronolimnaeaHS-1 with spray drying microencapsulation, Journal of Food Science, 51 (9), 2134-2140.
Jaswir, I. Noviendri, D. Hasrini, R. F. & Octavianti, F. (2011). Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry, Journal of Medicinal Plants Research, 5(33), 7119-7131.
Jiang, H. L. Kang, M. L. Quan, J. S. Kang, S. G. Akaike, T. Yoo, H. S. & Cho, C. S. (2008). The potential of mannosylated chitosan microspheres to target macrophage mannose receptors in an adjuvant-delivery system for intranasal immunization, Biomaterials, 29, 1931-1939
Khodaiyan, F. Razavi, S. H. & Mousavi, S. M. (2008). Optimization of canthaxanthin production by Dietzia natronolimnaea HS-1 from cheese whey using statistical experimental methods, Biochemical Engineering Journal, 40(3), 415-422.
Khoo, H. E. Prasad, K. N. Kong, K. W. Jiang, Y. & Ismail, A. (2011). Carotenoids and their isomers: color pigments in fruits and vegetables, Molecules, 16, 1710-1738.
Kopermsub, P. Mayen, V. & Warin, C. (2011). Potential use of niosomes for encapsulation of nisin and EDTA and their antibacterial activity enhancement, Food Research International, 44, 605–612.
Lancrajan, I. Diehl, H. A. Socaciu, C. Engelke, M. & Zorn-Kruppa, M. (2001). Carotenoid incorporation into natural membranes from artificial carriers: liposomes and β-cyclodextrins, Chemistry and Physics of Lipids, 112, 1-10.
Li, N. Peng, L. H. Chen, X. Nakagawa, S. & Gao, J. Q. (2011). Transcutaneous vaccines: novel advances in technology and delivery for overcoming the barriers, Vaccine, 29, 6179– 6190.
Mahale, N. B. Thakkar, P. D. Mali, R. G. Walunj, D.R. & Chaudhari, S.R. (2012). Niosomes: novel sustained release nonionic stable vesicular systems — an overview, Advances in Colloid and Interface Science, 183–184, 46–54.
Marianecci, C. Paolino, D. Celia, C. Fresta, M. Carafa, M. & Alhaique, F. (2010). Non-Ionic Surfactant Vesicles in Pulmonary Glucocorticoid Delivery: Characterization and interaction with human lung fibroblasts, Journal of Controlled Release, 147, 127–135.
Mokhtar, M. Sammour, O. A. Hammad, M. A. & Megrab, N. A. (2008). Effect of some formulation parameters on Flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes, International Journal of Pharmaceutics, 361, 104–111.
Mozafari, M. R. Flanagan, J. Matia-Merino, L. Awati, A. Omri, A. Suntres, Z. E. & Singh, H. (2006). Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods, Journal of the Science of Food and Agriculture, 86, 2038–2045.
Mujoriya, R. Z. Dhamande, K. & Bodla, R. B. )2011(. Niosomal drug delivery system – a review, International Journal of Applied Pharmaceutics, 3(3), 7-10.
Palozza, P. Muzzalupo, R. Trombino, S. Valdannini, A. & Picci, N. (2006). Solubilization and stabilization of β-carotene in niosomes: delivery to cultured cells, Chemistry and Physics of Lipids, 139, 32–42.
Pintea, A. Diehl, H. A. Momeu, C. Aberle, L. & Socaciu, C. (2005). Incorporation of carotenoid esters into liposomes, Biophysical Chemistry, 118, 7 – 14.
Razavi, S. H. (2004). Détermination de conditions de mise en oeuvre d’une souche nouvellement isolée de Sporobolomyces ruberrimus pour la production de torularhodine. Ph.D. dissertation. Institut national polytechnique de lorraine-Laboratoire des science de génie chimique, Nancy, France.
Razavi, S. H. & Marc, I. (2006). Effect of temperature and pH on the growth kinetics and carotenoid production by Sporobolomyces ruberrimus H110 using technical glycerol as carbon source, Iranian Journal of Chemistry and Chemical Engineering, 25(3), 59-64.
Razavi, S. H. Blanchard, F. & Marc, I. (2006). UV-HPLC / APCI-MS method for separation and identification of the carotenoids produced by Sporobolomyces ruberrimus H110, Iranian Journal of Chemistry and Chemical Engineering, 25(2), 1-10.
Ruckmani, K. & Sankar, V. (2010). Formulation and optimization of Zidovudine niosomes, AAPS Pharmaceutical Science and Technology, 11(3), 1119-1127.
Santos, D. T. & Meireles, M. A. A. (2010). Carotenoid pigments encapsulation: fundamentals, techniques and recent trends, The Open Chemical Engineering Journal, 4, 42-50.
Socaciua, C. Lausch, C. & Diehl, H. A. (1999). Carotenoids in DPPC vesicles: membrane dynamics, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55 (11), 2289-2297.
Sosnik, A. Carcaboso, A. M. Glisoni, R. J. Moretton, M. A. & Chiappetta, D. A. (2010). New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery, Advanced Drug Delivery Reviews, 62, 547–559.
Tarekegn, A. Joseph, N. M. Palani, S. Zacharia, A. & Ayenew, Z. (2010). Niosomes in targeted drug delivery: some recent advances, International Journal of Pharmauceutical Sciences and Research, 1(9), 1-8.
Tavano, L. Alfano, P. Muzzalupo, R. & de Cindio, B. (2011). Niosomes vs microemulsions: new carriers for topical delivery of Capsaicin, Colloids and Surfaces B: Biointerfaces, 87, 333– 339.
Ulrich, A. S. (2002). Biophysical aspects of using liposomes as delivery vehicles, Bioscience Reports, 22(2), 129-150.
Verma, S. Singh, S. K. Syan, N. Mathur, P. & Valecha, V. (2010). Nanoparticle vesicular systems: A versatile tool for drug delivery, Journal of Chemical and Pharmaceutical Research, 2(2), 496-509.
Waddad, A. Y. Abbad, S. Yu, F. Munyendoa, W. L. L. Jing, W. Lv, H. & Zhou, J. (2013). Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants, International Journal of Pharmaceutics, 456(2), 446-458.
Yang, S. & Guo, Y. (2014). Preparation of lomustine-iohexol compound liposomes and the determination of entrapment efficiency, Journal of Chemical and Pharmaceutical Research, 6(1), 402-407.