Accumulation of Beta-carotene in pure microalgae of Dunaliella Salina and the mixed cultures of Caspian Sea under nitrogen starvation

Document Type : Research Paper

Author

Abstract

Beta-carotene is a carotenoid and known as the most famous natural pigment. Microalgae are the most important sources for beta-carotene production. Due to the high sterilization cost of pure culture, in this study for the first time, growth, amounts of beta-carotene and chlorophyll in Caspian Sea microalgae under nutrient deficiencies stress, have been measured and compared with pure microalgae of Dunaliella Salina.
The initial and final concentrations of beta-carotene under nitrogen starvation (after 188 hours) was 7.5, 14.8 and 7.0 and 13.5 mol Beta-Carotene/g Protein for pure and mixed culture, respectively. Under nitrogen starvation the final protein concentration of microalgae Dunaliella Salina was increased from 341.8 to 950.1 mg/L. However, for Caspian Sea mixed microalgae the concentration was reached from 357.1 to 1010.0 mg/L. Operating conditions was the same for both samples as follows: pH=7.5, temperature 24-26 ° C and stirring at 160 rpm.
This study demonstrated that the accumulated Beta-carotene in Caspian Sea microalgae was comparable to the obtained values of pure microalgae of Dunaliella Salina. Therefore, mixed microalgae culture can be used for Beta-carotene production which is preferable and more economical than sterile systems and consequently, the possibility of process industrialization will be increased

Keywords

Main Subjects


Ben-Amotz, A. (1993). Production of β-carotene and vitamins by the halotolerant alga Dunaliella. Pharmaceutical and Bioactive Natural Products, Springer: 411-417.
Borowitzka, M. A., L. J. Borowitzka and D. Kessly (1990). Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. Journal of Applied Phycology, 2(2), 111-119.
Brányiková, I., B. Maršálková, J. Doucha, T. Brányik, K. Bišová, V. Zachleder and M. Vítová (2011). Microalgae—novel highly efficient starch producers. Biotechnology and bioengineering, 108(4), 766-776.
Cataldo, D., M. Maroon, L. Schrader and V. Youngs (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science & Plant Analysis,  (1)6, 71-80.
Celekli, A. and G. Dönmez (2006). Effect of pH, light intensity, salt and nitrogen concentrations on growth and β-carotene accumulation by a new isolate of Dunaliella sp. World Journal of Microbiology and Biotechnology, 22(2), 183-189.
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306.
Del Campo, J. A., J. Moreno, H. Rodrı́guez, M. Angeles Vargas, J. n. Rivas and M. G. Guerrero (2000). Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp.(Chlorophyta). Journal of biotechnology, 76(1), 51-59.
Eijckelhoff, C. and J. P. Dekker (1997). A routine method to determine the chlorophyll a, pheophytin a and β-carotene contents of isolated Photosystem II reaction center complexes. Photosynthesis research, 52(1), 69-73.
Finn, B., L. M. Harvey and B. McNeil (2006). Near‐infrared spectroscopic monitoring of biomass, glucose, ethanol and protein content in a high cell density baker's yeast fed‐batch bioprocess. Yeast,  23(7), 507-517.
Garbayo, I., M. Cuaresma, C. Vílchez and J. M. Vega (2008). Effect of abiotic stress on the production of lutein and β-carotene by Chlamydomonas acidophila. Process Biochemistry, 43(10), 1158-1161.
Garibay-Hernández, A., R. Vazquez-Duhalt, L. Serrano-Carreón and A. Martinez (2013). Nitrogen limitation in Neochloris oleoabundans: a reassessment of its effect on cell growth and biochemical composition. Applied biochemistry and biotechnology, 171(7), 1775-1791.
Hartmut, K. (1983 ). Determinations of total carotenoids and chlorophylls b of leaf extracts in different solvents. Analysis (Peach, K & Tracey, MV, eds), 4, 142-196.
Hassanpour, M., M. Abbasabadi, S. Ebrahimi, M. Hosseini and A. Sheikhbaglou (2015). Gravimetric enrichment of high lipid and starch accumulating microalgae. Bioresource technology, 196, 17-21.
Hejazi, M., E. Holwerda and R. Wijffels (2004). Milking microalga Dunaliella salina for β‐carotene production in two‐phase bioreactors. Biotechnology and bioengineering, 85(5), 475-481.
Johnson, M. K., E. J. Johnson, R. D. MacElroy, H. L. Speer and B. S. Bruff (1968). Effects of salts on the halophilic alga Dunaliella viridis. Journal of Bacteriology, 95(4), 1461-1468.
Lamers, P. P., M. Janssen, R. C. De Vos, R. J. Bino and R. H. Wijffels (2012). Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. Journal of biotechnology, 162(1), 21-27.
López, C. V. G., M. d. C. C. García, F. G. A. Fernández, C. S. Bustos, Y. Chisti and J. M. F. Sevilla (2010). Protein measurements of microalgal and cyanobacterial biomass. Bioresource technology, 101(19), 7587-7591.
Markou, G. and E. Nerantzis (2013). Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnology advances, 31(8), 1532-1542.
Mooij, P. R., G. R. Stouten, J. Tamis, M. C. van Loosdrecht and R. Kleerebezem (2013). Survival of the fattest. Energy & Environmental Science, 6(12), 3404-3406.
Mulders, K. J., P. P. Lamers, D. E. Martens and R. H. Wijffels (2014). Phototrophic pigment production with microalgae: biological constraints and opportunities. Journal of Phycology, 50(2), 229-242.
Salehizadeh, H. and M. Van Loosdrecht (2004). Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnology advances, 22(3), 261-279.
Vishniac, W. and M. Santer (1957). The thiobacilli. Bacteriological Reviews, 21(3), 195.
Waterborg, J. H. (2009). The Lowry method for protein quantitation. The protein protocols handbook, Springer, 7-10.