Investigating Effective Factors on Sugarcane Production Performance to Increase the Production of Sugarcane Using Data Mining

Document Type : Research Paper

Authors

1 Assistant Professor, Biosystems engineering Dept., Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Ph.D. Biosystems engineering Dept., Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Professor, Biosystems engineering Dept., Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

Sugarcane is an important industrial­­-agricultural crop in country. Considering the high cultivation level of this product in Khuzestan province and the high volume of data stored in these mechanized agricultural units, it is necessary to have a tool to process stored data. The data mining technique is well equipped to provide sugarcane manufacturers with the necessary information and patterns in modeling the yield of sugarcane. One of the most practical of these algorithms is decision trees. The main objective of this research is to predict yield sugarcane and to evaluate the factors affecting it using decision trees CART and CHAID. The present work was an analytical study conducted on a database containing 13211 records. Data were obtained from farms of Amir Kabir Agro-Industry, during 2013-2016. Data analysis was performed using IBM modeler software version 14.2 by CRISP methodology. The accuracy of decision tree (CART and CHAID) on the training data and test data were 90, 81, 85 and 79 percent, respectively. The results of this research can be used for sugarcane production and cultivation industries in Khuzestan Province in order to evaluate and optimize the sugarcane production process and predict the yield of sugarcane.

Keywords

Main Subjects


Ayman E. K., Kadry, M. & Walid, G. (2015). Proposed framework for implementing data mining techniques to enhance decisions in agriculture sector, Procedia Computer Science, 65, 633
Ellis, R. N., Basford, K. E., Cooper, M., Leslie, J. K. & Byth, T. L. D. E. (2001). A methodology for analysis of sugarcane productivity trends. I. Analysis across districts. Australian Journal of Agricultural Research, 52, 1001–1009.
Geetha, M. C. S. (2015). A survey on data mining techniques in agriculture. International Journal of Innovative Research in Computer and Communication Engineering, 3(2), 887-892.
Goktepe, A. B., Altun, S. & Sezar, A. (2015). Soil clustering by fuzzy C-Means algorithm. Advances in Engineering Software, 36, 691-698.
Jeysenthil.K. M. S., Manikandan.T & Murali, E. (2014). Third generation agricultural support system development using data mining. International Journal of Innovative Research in Science, Engineering and Technology, 3 (3), 9923- 9930.
Kalpana, R., Shanthi, N. & Arumugam, S. (2014a). Data mining – An evolutionary view of agriculture. International Journal of Application or Innovation in Engineering & Management, 3 (3), 102- 105.
Kalpana, R., Shanthi, N. & Arumugam, S. (2014b). A survey on data mining techniques in agriculture. International Journal of Advances in Computer Science and Technology, 3(8), 426-431.
Lawes, R. A., Lawn, R. J., Wegener, M. K. & Basford, K. E. (2002). Understanding and managing the late time of ratooning effect on cane yield. Proceedings of the Australian Society of Sugar Cane Technology, 24, 160–165.
Monjezi, N., Sheikhdavoodi1, M. J., Zakidizaji1, H., Marzban, A. & Shomeili, M. (2016). Operations scheduling of sugarcane production using fuzzy GERT method (part II: preserve operations, harvesting and rationing). Agricultural Engineering International: CIGR Journal, 18 (3), 343- 349.
Monjezi, N., Sheikhdavoodi, M. J., Zakidizaji, H., Marzban, A. & Shomeili, M. (2015a). Operations scheduling of sugarcane production using classical GERT method (part I: land preparation, planting and preserve operations). Journal of Agricultural Studies, 3 (2), 85-96.
Monjezi, N., Sheikhdavoodi, M. J., Zakidizaji, H., Marzban, A. & Shomeili, M. (2015b). Operations scheduling of sugarcane production using classical GERT method (part II: preserve operations, harvesting and ratooning). Journal of Agricultural Studies, 3 (2), 85-96.
Monjezi, N. & Zakidizaji, H. (2017). Fuzzy approach to optimize overhaul time of sugarcane harvester using GERT network method. Iranian Journal of Biosystem Engineering, 48(1), 83-91. (In Farsi)
Noorzadeh, M., Khavazi, K., Malakooti, M. & Hashemi, S. (2011).Evaluation of the effectiveness of C-means and GK methods for fuzzy clustering of copper concentration in agricultural lands (Case study: Hamedan Province). Journal of Agricultural Engineering, 33 (1), 61-70. (In Farsi)
Rajesh, D. (2011). Application of spatial data mining for agriculture. International Journal of Computer Applications, 15(2), 7-9.
Ramesh, D. & Vishnu Vardhan, B. (2013). Data mining techniques and applications to agricultural yield data. International Journal of Advanced Research in Computer and Communication Engineering, 2(9), 3477-3480.
Raorane, A.A. & Kulkarni R.V. (2013). Review- Role of data mining in agriculture. International Journal of Computer Science and Information Technologies, 4 (2), 270 – 272.
Sharma, L. & Mehta, N. (2012). Data mining techniques: A tool for knowledge management system in agriculture. International Journal of Scientific and Technology Research, 1(5), 67-73.
Yethiraj, N. G. (2012). Applying Data Mining Techniques in the field of agriculture and alliedsciences. International Journalof Business Intelligents, 1(2), 72-76.
Yoneyama, Y., Suzuki, S., Sawa, R., Yoneyama, K., Power, G. G. & Araki, T. 2002. Increased plasma adenosine concentrations and the severity of preeclampsia. Obstet Gynecol, 100(6), 1266-1270.