Preparing Pickering Emulsion of Canthaxanthin and Stabilization with Cellulose Nanocrystals

Document Type : Research Paper

Authors

1 Former Graduated Student, Department of Food Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

2 Professor, Department of Food Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

3 Assistant Professor, Department of Fisheries, College of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

4 Associate Professor, Department of Food Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

Abstract

The aim of this study was to prepare an ultra-stable emulsion for canthaxanthin with cellulose nanocrystals and investigating its physiochemical properties. Canthaxanthin used in this study was a metabolite of Dietzia natronolimnaea HS-1. Cellulosic nanocrystals (CNCs) of cotton linter were made and characterized using acid hydrolysis. Dynamic light scattering (DLS) alongside Atomic Force Microscopy (AFM) represented needle-like particles with length of 212±11 and thickness of 5±2. The crystallinity degree of CNC for cotton linter increased from (76.4%) to (86.6%). FTIR (ATR) spectroscopy suggested more surface hydroxyl groups for CNCs than native cellulose and complete digestion of hemicelluloses by acid. Pickering emulsions of oil in water were prepared using an ultrasonic homogenizer. The results of the morphological tests indicated a sample with the same particle dispersion. Results indicated that generated emulsions represent promising stability in different environmental conditions for a long period of time.

Keywords

Main Subjects


Chen, J., Vogel, R., Werner, S., Heinrich, G., Clausse, D., & Dutschk, V. (2011). Influence of the particle type on the rheological behavior of Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 382(1), 238-245.
Tzoumaki, M. V., Moschakis, T., & Biliaderis, C. G. (2009). Metastability of nematic gels made of aqueous chitin nanocrystal dispersions. Biomacromolecules, 11(1), 175-181.
Tzoumaki, M. V., Moschakis, T., Kiosseoglou, V., & Biliaderis, C. G. (2011). Oil-in-water emulsions stabilized by chitin nanocrystal particles. Food hydrocolloids, 25(6), 1521-1529.
Wei, Z., Wang, C., Zou, S., Liu, H., & Tong, Z. (2012). Chitosan nanoparticles as particular emulsifier for preparation of novel pH-responsive Pickering emulsions and PLGA microcapsules. Polymer, 53(6), 1229-1235.
Wen, C., Yuan, Q., Liang, H., & Vriesekoop, F. (2014). Preparation and stabilization of d -limonene Pickering emulsions by cellulose nanocrystals. Carbohydrate Polymers, 112, 695–700.
Surh, J., Decker, E. A., & Mcclements, D. J. (2006). Properties and stability of oil-in-water emulsions stabilized by fish gelatin, 20, 596–606.
Tan, Y., Xu, K., Liu, C., Li, Y., Lu, C., & Wang, P. (2012). Fabrication of starch-based nanospheres to stabilize pickering emulsion. Carbohydrate Polymers, 88(4), 1358-1363.
Eichhorn, S. J. et al. (2010) Review: Current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science. 45: 1-33.
El-Sakhawy, M., & Hassan, M. L. (2007). Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydrate polymers, 67(1), 1-10
Dickinson, E. (2012). Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends in Food Science & Technology, 24(1), 4-12.
Chan, H. C., Chia, C. H., Zakaria, S., Ahmad, I., & Dufresne, A. (2012). Production and characterisation of cellulose and nano-crystalline cellulose from kenaf core wood. BioResources, 8(1), 785-794.
Beck-Candanedo, S., Roman, M., & Gray, D. G. (2005). Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules, 6(2), 1048-1054.
Besbes, I., Alila, S., & Boufi, S. (2011). Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydrate Polymers, 84(3), 975-983.
Capron, I., & Cathala, B. (2013). Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules, 14(2), 291–296.
Bondeson, D., Kvien, I., & Oksman, K. (2006). Strategies for preparation of cellulose whiskers from microcrystalline cellulose as reinforcement in nanocomposites.Oxford University Press, 938, 10-25.
Bajpai, S. K., Pathak, V., Chand, N., & Soni, B. (2013). Cellulose nano whiskers (CNWs) loaded-poly (sodium acrylate) hydrogels. Part-I. Effect of low concentration of CNWs on water uptake. Journal of Macromolecular Science, Part A, 50(5), 466-477.
Destribats, M., Rouvet, M., Gehin-Delval, C., Schmitt, C., & Binks, B. P. (2014). Emulsions stabilised by whey protein microgel particles: towards food-grade Pickering emulsions. Soft matter, 10(36), 6941-6954.
Frelichowska, J., Bolzinger, M. A., & Chevalier, Y. (2010). Effects of solid particle content on properties of o/w Pickering emulsions. Journal of colloid and interface science, 351(2), 348-356.
Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical reviews, 110(6), 3479-3500.
Hon, D. N. S., & Shiraishi, N. (2000). Wood and cellulosic chemistry, revised, and expanded. CRC press.
Jiang, F., Esker, A. R., & Roman, M. (2010). Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir, 26(23), 17919-17925.
Kalashnikova, I., Bizot, H., Bertoncini, P., Cathala, B., & Capron, I. (2013). Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter, 9(3), 952–959.
Kalashnikova, I., Bizot, H., Cathala, B., & Capron, I. (2011). Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules, 13(1), 267-275.
Kargar, M., Fayazmanesh, K., Alavi, M., Spyropoulos, F., & Norton, I. T. (2012). Investigation into the potential ability of Pickering emulsions (food-grade particles) to enhance the oxidative stability of oil-in-water emulsions. Journal of colloid and interface science, 366(1), 209-215.
Kvien, I., Tanem, B.S., Oksman, K., (2005). Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules, 6, 3160–3165.
Li, Q., & Renneckar, S. (2011). Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromolecules, 12(3), 650-659.
Lu, H., Gui, Y., Zheng, L., & Liu, X. (2013). Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Research International, 50(1), 121-128.
Lu, P., & Hsieh, Y. L. (2010). Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydrate Polymers, 82(2), 329-336.
Marku, D., Wahlgren, M., Rayner, M., Sjöö, M., & Timgren, A. (2012). Characterization of starch Pickering emulsions for potential applications in topical formulations. International journal of pharmaceutics, 428(1), 1-7.
Pakzad, A. (2011). Nanomechanics of cellulose crystals and cellulose-based polymer composites. Dissertation, Michigan Technological University.
Petersson, L., Kvien, I., & Oksman, K. (2007). Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials. Composites Science and Technology, 67(11), 2535-2544.
Rayner, M., Marku, D., Eriksson, M., Sjöö, M., Dejmek, P., & Wahlgren, M. (2014). Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 458, 48-62.
Segal, L. G. J. M. A., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X- ray diffractometer. Textile Research Journal, 29(10), 786–794.
Winuprasith, T., & Suphantharika, M. (2013). Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: Preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocolloids, 32(2), 383–394.
Tasset, S., Cathala, B., & Capron, I. (2014). Versatile cellular foams derived from CNC-stabilized Pickering emulsions. RSC Advances, 893–898.
Zoppe, J. O., Venditti, R. A., & Rojas, O. J. (2012). Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. Journal of colloid and interface science, 369(1), 202-209.
Li, Q., & Renneckar, S. (2011). Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromolecules, 12(3), 650–659
Chandi, G.K., Gill, B.S., (2011). production and characterization of microbial carotenoids as an alternative to synthetic colors: a review. International journal of food properties. 14, 503–513.
Gharibzahedi, S. M. T., Razavi, S. H. & Mousavi, M. (2014) Characterizing the natural canthaxanthin/2-hydroxypropyl-β- cyclodextrin inclusion complex. Carbohydrate Polymer. 101, 1147–1153.
 Gharibzahedi, S. M. T., Razavi, S. H. & Mousavi, S. M. (2013a). Ultrasound-assisted formation of the canthaxanthin emulsions stabilized by arabic and xanthan gums. Carbohydrate Polymer. 96, 21–30
Kalashnikova, I., Bizot, H., Bertoncini, P., Cathala, B., & Capron, I. (2013). Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter, 9(3), 952–959.
Razavi, S. H., Blanchard, F., & Marc, I. (2006). UV–HPLC/APCI MS method for separation and identification of the carotenoids produced by Sporobolomyces ruberrimus H110. Iranian Journal of Chemistry & Chemical Engineering, 25, 1–10.
Schiedt, K., Liaaen-Jensen, S., (1995). Isolation and analysis. In: Britton, G., Liaaen- Jensen, S., Pfander, H. (Eds.), Carotenoids: Isolation and Analysis. Birkhäuser Verlag, Basel, pp. 81–108