Environmental Impact and Energy Flow Assessment in Greenhouse Primrose Production Using Cumulative Energy Demand and Cumulative Exergy Demand Approach

Document Type : Research Paper

Authors

1 Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Department of Agricultural Engineering, Faculty of Engineering and Technology, College of Agriculture and Natural Resources, Tehran University

Abstract

The present study analyzed the energy flow of this product by the cumulative energy demand (CED) and cumulative exergy demand (CExD) method by providing a life cycle inventory of greenhouse Primrose production. The required data through interviews and questionnaires were collected from greenhouse owners in Savojbolagh. Based on the results, the total CED and CExD values for one bush of Primrose were calculated as 8.45 and 8.24 MJ eq., respectively. Among the impact categories of the CED method, non-renewable-fossil had the largest share with 8.43 MJ eq. that 66% of it was related to direct energy consumption in the greenhouse. Also, 8.20 MJ eq. CExD was related to the non-renewable-fossil impact category that direct energy consumption in the greenhouse had the most important role in it. The energy consumption for the production of one bush of Primrose resulted in the emission of 0.20576 kg of carbon dioxide equivalent.

Keywords

Main Subjects


BIlgen, S. (2014). The determination of the chemical exergy values of Indonesian biomass and biomass residues. Journal of Biobased Materials and Bioenergy, 8(1), 88-93.
Bösch, M. E., Hellweg, S., Huijbregts, M. A., & Frischknecht, R. (2007). Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. The International Journal of Life Cycle Assessment, 12(3), 181.
Cellura, M., Longo, S., & Mistretta, M. (2012). Life Cycle Assessment (LCA) of protected crops: an Italian case study. Journal of cleaner production28, 56-62.
Dewulf, J., Bösch, M. E., Meester, B. D., Vorst, G. V. D., Langenhove, H. V., Hellweg, S., & Huijbregts, M. A. (2007). Cumulative exergy extraction from the natural environment (CEENE): a comprehensive life cycle impact assessment method for resource accounting. Environmental science & technology41(24), 8477-8483.
Dias, G. M., Ayer, N. W., Khosla, S., Van Acker, R., Young, S. B., Whitney, S., & Hendricks, P. (2017). Life cycle perspectives on the sustainability of Ontario greenhouse tomato production: Benchmarking and improvement opportunities. Journal of Cleaner Production140, 831-839.
Dincer, I., Rosen, M.A. (2007). Exergy, Energy, Environment and Simulation Development. Exergy Elsever: Oxford, UK.
Duschl, A., Mauch, W., Boermans, T., Fritsche, U., Patyk, A., (2003). Anwendung und Kommunikation des
Frischknecht, R., Wyss, F., Knöpfel, S. B., Lützkendorf, T., & Balouktsi, M. (2015). Cumulative energy demand in LCA: the energy harvested approach. 
Frischknecht, R., Wyss, F., Knöpfel, S. B., Lützkendorf, T., & Balouktsi, M. (2015). Cumulative energy demand in LCA: the energy harvested approach. The International Journal of Life Cycle Assessment20(7), 957-969.
Golzar, F., Heeren, N., Hellweg, S., & Roshandel, R. (2018). A novel integrated framework to evaluate greenhouse energy demand and crop yield production. Renewable and Sustainable Energy Reviews96, 487-501.
Guinée, J. B. (2002). Handbook on life cycle assessment operational guide to the ISO standards. The international journal of life cycle assessment7(5), 311-313.
Huijbregts, M. A., Hellweg, S., Frischknecht, R., Hendriks, H. W., Hungerbuhler, K., & Hendriks, A. J. (2010). Cumulative energy demand as predictor for the environmental burden of commodity production. Environmental science & technology, 44(6), 2189-2196.
ISO, 2006. ISO 14040 International Standard. Environmental management — Life cycle assessment — Principles and framework., International Organization for Standardization (ISO), Geneva. Switzerland.
Khoshnevisan, B., Rafiee, S., Omid, M., & Yousefi, M. (2013). Prediction of environmental indices of Iran wheat production using artificial neural networks. International Journal of Energy & Environment4(2), 339-348.
Kouchaki-Penchah, H., Sharifi, M., Mousazadeh, H., Zarea-Hosseinabadi, H., & Nabavi-Pelesaraei, A. (2016). Gate to gate life cycle assessment of flat pressed particleboard production in Islamic Republic of Iran. Journal of cleaner production112, 343-350.
Lazzerini, G., Lucchetti, S., & Nicese, F. P. (2014). Analysis of greenhouse gas emissions from ornamental plant production: a nursery level approach. Urban forestry & urban greening, 13(3), 517-525.
Mehrabi Boshra Badi, H., & Zeinalzadeh R, (2006). Examining the policy impact and comparative advantage cucumber and tomato greenhouse products in kerman province. Journal of Agricultural sciences and natural resources 14(5).
Mohammadi A, Tabatabaeefar A, Shahin S, Rafiee S, Keyhani A. Energy use and agriculture. Renewable Energy29(1), 39-51.
Mostashar Nezami, I., Abolghasem Mira, S., & Hossein Nikookar, G. (2011). Explanation of Factors Affecting the Export of Flowers in Iran: A case study in Alborz province. European Online Journal of Natural and Social Sciences: Proceedings, 2(3 (s)), pp-3217.
Mousavi-Avval, S. H., Rafiee, S., Sharifi, M., Hosseinpour, S., & Shah, A. (2017). Combined application of Life Cycle Assessment and Adaptive Neuro-Fuzzy Inference System for modeling energy and environmental emissions of oilseed production. Renewable and Sustainable Energy Reviews78, 807-820.
Nemecek, T., Kägi, T., & Blaser, S. (2007). Life cycle inventories of agricultural production systems. Final report ecoinvent v2. 0 No15.
Nguyen, T. L. T., & Hermansen, J. E. (2012). System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Applied energy89(1), 254-261.
Ntinas, G. K., Neumair, M., Tsadilas, C. D., Meyer, J. (2017). Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions. Journal of cleaner production, 142, 36173626.
Ozkan, B., Akcaoz, H., & Fert, C. (2004). Energy input–output analysis in Turkish agriculture. Renewable energy29(1), 39-51.
Pellegrini, L. F., & de Oliveira Jr, S. (2007). Exergy analysis of sugarcane bagasse gasification. Energy32(4), 314-327.
Rant, Z. (1956). Exergy, a new word for technical available work. Forsch. Ing. Wis22(1), 36-37.
Razaeii, M. (2012). Identifying Iran’s agricultural products global target markets and their potential international rivals. Iranian Academy of Executive Studies Journal, 3(5), 39-48.
Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., ... & Pennington, D. W. (2004). Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment international30(5), 701-720.
Reistad, G. M. (1975). Available energy conversion and utilization in the United States. Journal of Engineering for Power97(3), 429-434.
Renewable Energy and Energy Efficiency Organization. (2019). Ministry of Energy of the Islamic Republic of Iran. http://www.satba.gov.ir/
Russo, G., & De Lucia Zeller, B. (2007, October). Environmental evaluation by means of LCA regarding the ornamental nursery production in rose and sowbread greenhouse cultivation. In International Symposium on High Technology for Greenhouse System Management: Greensys2007 801 (pp. 1597-1604).
Sahle, A., & Potting, J. (2013). Environmental life cycle assessment of Ethiopian rose cultivation. Science of the total environment443, 163-172.
Taki, M., & Yildizhan, H. (2018). Evaluation the sustainable energy applications for fruit and vegetable productions processes; case study: Greenhouse cucumber production. Journal of Cleaner Production199, 164-172.
Taki, M., Ajabshirchi, Y., Mahmoudi, A. (2012a). Application of Parametric and Non-Parametric Method to Analyzing of Energy Consumption for cucumber Production in Iran. Modern Applied Science, 6(1), 75-87.
Taki, M., Mahmoudi, A., Mobtaker, H. G., & Rahbari, H. (2012b). Energy consumption and modeling of output energy with multilayer feed-forward neural network for corn silage in Iran. Agricultural Engineering International: CIGR Journal14(4), 93-101.
Taki, M., Ajabshirchi, Y., Mobtaker, H. G., & Abdi, R. (2012c). Energy consumption, input-output relationship and cost analysis for greenhouse productions in Esfahan province of Iran. American Journal of Experimental Agriculture2(3), 485-501.
Wall, G. (2013). Exergy, life and sustainable development. Problemy Ekorozwoju-Problems of Sustainable Development8(1), 27-41.
Yildizhan, H. (2018). Energy, exergy utilization and CO2 emission of strawberry production in greenhouse and open field. Energy143, 417-423.
Yildizhan, H., & Taki, M. (2018). Assessment of tomato production process by cumulative exergy consumption approach in greenhouse and open field conditions: Case study of Turkey. Energy156, 401-408.
Zarei, M. J., Kazemi, N., & Marzban, A. (2017). Life cycle environmental impacts of cucumber and tomato production in open-field and greenhouse. Journal of the Saudi Society of Agricultural Sciences.