Ahmadipourroudposht, M., Fallahiarezoudar, E., Yusof, N.M., Idris, A., 2015. Application of response surface methodology in optimization of electrospinning process to fabricate (ferrofluid/polyvinyl alcohol) magnetic nanofibers. Mater. Sci. Eng. C 50, 234–241.
                                                                                                                Ahmed, R.M., 2017. Surface Characterization and Optical Study on Electrospun Nanofibers of PVDF/PAN Blends. Fiber Integr. Opt. 36, 78–90. https://doi.org/10.1080/01468030.2017.1280098
                                                                                                                Ahmed, R.M., 2015. Surface and spectroscopic properties of CdSe/ZnS/PVC nanocomposites. Polym. Compos. 38, 749–758. https://doi.org/10.1002/pc.23634
                                                                                                                Angammana, C.J., Jayaram, S.H., 2016. Fundamentals of electrospinning and processing technologies. Part. Sci. Technol. 34, 72–82. https://doi.org/10.1080/02726351.2015.1043678
                                                                                                                Aykut, Y., Pourdeyhimi, B., Khan, S.A., 2013. Effects of surfactants on the microstructures of electrospun polyacrylonitrile nanofibers and their carbonized analogs. J. Appl. Polym. Sci. 130, 3726–3735. https://doi.org/10.1002/app.39637
                                                                                                                Broumand, A., Emam-Djomeh, Z., Khodaiyan, F., Davoodi, D., Mirzakhanlouei, S., 2014a. Optimal fabrication of nanofiber membranes from ionized-bicomponent cellulose/polyethyleneoxide solutions. Int. J. Biol. Macromol. 66, 221–228. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2014.02.042
                                                                                                                Broumand, A., Emam-Djomeh, Z., Khodaiyan, F., Davoodi, D., Mirzakhanlouei, S., 2014b. Optimal fabrication of nanofiber membranes from ionized-bicomponent cellulose/polyethyleneoxide solutions. Int. J. Biol. Macromol. 66, 221–228. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2014.02.042
                                                                                                                Broumand, A., Emam-Djomeh, Z., Khodaiyan, F., Mirzakhanlouei, S., Davoodi, D., Moosavi-Movahedi, A.A., 2015. Nano-web structures constructed with a cellulose acetate/lithium chloride/polyethylene oxide hybrid: Modeling, fabrication and characterization. Carbohydr. Polym. 115, 760–767. https://doi.org/https://doi.org/10.1016/j.carbpol.2014.06.055
                                                                                                                Dhakate, S.R., Singla, B., Uppal, M., Mathur, R.B., 2010. Effect of processing parameters on morphology and thermal properties of electrospun polycarbonate nanofibers. Adv. Mater. Lett. 1, 200–204.
                                                                                                                Dobosz, K.M., Kuo-Leblanc, C.A., Martin, T.J., Schiffman, J.D., 2017. Ultrafiltration Membranes Enhanced with Electrospun Nanofibers Exhibit Improved Flux and Fouling Resistance. Ind. Eng. Chem. Res. 56, 5724–5733. https://doi.org/10.1021/acs.iecr.7b00631
                                                                                                                Fleming, R.R., Pardini, L.C., Brito, C.A.R., Oliveira, M.S., Alves, N.P., Massi, M., 2011. Plasma treatment of polyacrylonitrile/vinyl acetate films obtained by the extrusion process. Polym. Bull. 66, 277–288. https://doi.org/10.1007/s00289-010-0318-6
                                                                                                                Gupta, P., Elkins, C., Long, T.E., Wilkes, G.L., 2005. Electrospinning of linear homopolymers of poly(methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer (Guildf). 46, 4799–4810. https://doi.org/10.1016/j.polymer.2005.04.021
                                                                                                                Heidari, M., Bahrami, H., Ranjbar-Mohammadi, M., 2017. Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats. Mater. Sci. Eng. C 78, 218–229. https://doi.org/10.1016/J.MSEC.2017.04.095
                                                                                                                Hinkelmann, K., n.d. Design and Analysis of Experiments.
                                                                                                                Khuri, A.I., 2011. Response Surface Methodology BT  - International Encyclopedia of Statistical Science, in: Lovric, M. (Ed.), . Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1229–1231. https://doi.org/10.1007/978-3-642-04898-2_492
                                                                                                                Kriegel, C., Arrechi, A., Kit, K., McClements, D.J., Weiss, J., 2008. Fabrication, Functionalization, and Application of Electrospun Biopolymer Nanofibers. Crit. Rev. Food Sci. Nutr. 48, 775–797. https://doi.org/10.1080/10408390802241325
                                                                                                                Li, Z., Wang, C., 2013. One-Dimensional nanostructures. https://doi.org/10.1007/978-3-642-36427-3
                                                                                                                Liao, Y., Wang, R., Tian, M., Qiu, C., Fane, A.G., 2013. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Memb. Sci. 425–426, 30–39. https://doi.org/https://doi.org/10.1016/j.memsci.2012.09.023
                                                                                                                Moghadam, B.H., Haghi, A.K., Kasaei, S., Hasanzadeh, M., 2015. Computational-Based Approach for Predicting Porosity of Electrospun Nanofiber Mats Using Response Surface Methodology and Artificial Neural Network Methods. J. Macromol. Sci. Part B 54, 1404–1425. https://doi.org/10.1080/00222348.2015.1090654
                                                                                                                Myers, R.H., Montgomery, D.C., 2002. Response Surface Methodology: Process and Product in Optimization Using Designed Experiments, 1st ed. John Wiley {&} Sons, Inc., New York, NY, USA.
                                                                                                                Noruzi, M., 2016. Electrospun nanofibres in agriculture and the food industry: a review. J. Sci. Food Agric. 96, 4663–4678. https://doi.org/10.1002/jsfa.7737
                                                                                                                Pokorny, M., Novak, J., Rebicek, J., Klemes, J., Velebny, V., 2015. An Electrostatic Spinning Technology with Improved Functionality for the Manufacture of Nanomaterials from Solutions. Nanomater. Nanotechnol. 5, 17. https://doi.org/10.5772/60773
                                                                                                                Rao, M.S., Kanatt, S.R., Chawla, S.P., Sharma, A., 2010. Chitosan and guar gum composite films: Preparation, physical, mechanical and antimicrobial properties. Carbohydr. Polym. 82, 1243–1247. https://doi.org/https://doi.org/10.1016/j.carbpol.2010.06.058
                                                                                                                Ray, S., Lalman, J.A., 2011. Using the Box–Benkhen design (BBD) to minimize the diameter of electrospun titanium dioxide nanofibers. Chem. Eng. J. 169, 116–125.
                                                                                                                Ray, S.S., Chen, S.-S., Hsu, H.-T., Cao, D.-T., Nguyen, H.-T., Nguyen, N.C., 2017. Uniform hydrophobic electrospun nanofibrous layer composed of polysulfone and sodium dodecyl sulfate for improved desalination performance. Sep. Purif. Technol. 186, 352–365. https://doi.org/http://dx.doi.org/10.1016/j.seppur.2017.06.032
                                                                                                                Rogina, A., 2014. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl. Surf. Sci. 296, 221–230. https://doi.org/10.1016/J.APSUSC.2014.01.098
                                                                                                                Rupiasih, N.N., Suyanto, H., Sumadiyasa, M., Wendri, N., 2013. Study of effects of low doses UV radiation on microporous polysulfone membranes in sterilization process. Open J. Org. Polym. Mater. 3, 12.
                                                                                                                Salarbashi, D., Mortazavi, S.A., Noghabi, M.S., Fazly Bazzaz, B.S., Sedaghat, N., Ramezani, M., Shahabi-Ghahfarrokhi, I., 2016. Development of new active packaging film made from a soluble soybean polysaccharide incorporating ZnO nanoparticles. Carbohydr. Polym. 140, 220–227. https://doi.org/10.1016/J.CARBPOL.2015.12.043
                                                                                                                Salarbashi, D., Tafaghodi, M., Bazzaz, B.S.F., 2018. Soluble soybean polysaccharide/TiO2 bionanocomposite film for food application. Carbohydr. Polym. 186, 384–393. https://doi.org/https://doi.org/10.1016/j.carbpol.2017.12.081
                                                                                                                Sarlak, N., Nejad, M.A.F., Shakhesi, S., Shabani, K., 2012. Effects of electrospinning parameters on titanium dioxide nanofibers diameter and morphology: An investigation by Box–Wilson central composite design (CCD). Chem. Eng. J. 210, 410–416. https://doi.org/https://doi.org/10.1016/j.cej.2012.08.087
                                                                                                                Shokrollahzadeh, S., Tajik, S., 2018. Fabrication of thin film composite forward osmosis membrane using electrospun polysulfone/polyacrylonitrile blend nanofibers as porous substrate. Desalination 425, 68–76. https://doi.org/https://doi.org/10.1016/j.desal.2017.10.017
                                                                                                                Suja, P.S., Reshmi, C.R., Sagitha, P., Sujith, A., 2017. Electrospun Nanofibrous Membranes for Water Purification. Polym. Rev. 57, 467–504. https://doi.org/10.1080/15583724.2017.1309664
                                                                                                                Uzal, N., Ates, N., Saki, S., Bulbul, Y.E., Chen, Y., 2017. Enhanced hydrophilicity and mechanical robustness of polysulfone nanofiber membranes by addition of polyethyleneimine and Al2O3 nanoparticles. Sep. Purif. Technol. 187, 118–126. https://doi.org/http://dx.doi.org/10.1016/j.seppur.2017.06.047
                                                                                                                Yolmeh, M., Jafari, S.M., 2017. Applications of Response Surface Methodology in the Food Industry Processes. Food Bioprocess Technol. 10, 413–433. https://doi.org/10.1007/s11947-016-1855-2
                                                                                                                Yu, D.G., Chatterton, N.P., Yang, J.H., Wang, X., Liao, Y.Z., 2012. Coaxial electrospinning with triton X-100 solutions as sheath fluids for preparing PAN nanofibers. Macromol. Mater. Eng. 297, 395–401. https://doi.org/10.1002/mame.201100258
                                                                                                                Zhang, X., Shi, F., Niu, J., Jiang, Y., Wang, Z., 2008. Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem. 18, 621–633.