A Review on Veterinary Drug Residues in Foods of Animal Origin and the Effect of Different Processes on Their Stability

Document Type : Review

Authors

1 PhD student, Dept. of Food Science and Technology, Faculty of Agriculture, Tabriz University, Tabriz, Iran.

2 Professor., Dept. of Food Science and Technology, Faculty of Agriculture, Tabriz University, Tabriz, Iran.

Abstract

In spite of their advantages in the treatment of animal diseases, veterinary drugs can remain in foods of animal origin and cause considerable threats to the consumer health. Antibiotics, anthelminthics, Anticoccidial drugs, and nonsteroidal anti-inflammatory drugs are the major veterinary drugs that can contaminate food products. Food processing can be considered as a strategy for the removal of drug residues in foods. Awareness of drug residues and their reductions during different processes can be important in terms of the consumer health. This paper, therefore, reviews the literature on veterinary drug residues in foods of animal origin, including milk and milk products, eggs, meat, and meat products, as well as the effect of different processes on the stability of these drug residues. To this end, all related articles and theses were reviewed from national (SID, Irandoc, and MagIran) and international (Science Direct, Google Scholar, Scopus, and Pub Med) databases. According to reviewed studies, most of foods of animal origin in Iran were contaminated with antibiotic residues. In other countries, foods of animal origin contained different levels of drug residues. Based on scientific findings, heat processing could reduce the residues of tetracycline, macrolides, aminoglycosides, and sulfonamides in milk, residues of tetracycline, ciprofloxacin, enrofloxacin, sulfanilamide, and chlorpyrifos in eggs, and residues of oxytetracycline, ampicillin, chloramphenicol, sulfonamides, and anthelminthics in meat products. The microwave, freezing, and fermentation processes were also effective in the reduction of drug residues in foods.

Keywords


Abbasi, M. M., Nemati, M., Babaei, H., Ansarin, M., Nourdadgar, A. O. S. (2012). Solid-phase extraction and simultaneous determination of tetracycline residues in edible cattle tissues using an HPLC-FL method. Iran Journal of Pharmaceutical Research, (11), 781-787.
Abbasi, N. (2019). Investigation of residual amount of tetracyclines and penicillins in the raw milk collection platform of Semnan in autumn and winter of 1397. Ph. D. dissertation, University of Semnan, Faculty of Veterinary Medicine. (In Farsi)
Abd-Rabo, F. H., Elsalamony, H., Sakr, S. S. (2016). Reduction of pesticide residues in Egyptian buffalo milk by some processing treatments. International Journal of Dairy Science, (11), 75-80.
Abebew, D., Belihu, K., Zewde, G. (2014). Detection and determination of oxytetracycline and penicillin G antibiotic residue levels in bovine bulk milk from Nazareth dairy farms, Ethiopia. Ethiopian Veterinary Journal, (18), 1-15.
Abedi Shirazi, kh. (1983). Survery on the contamination of milk with antibiotics in Shiraz. Ph. D. dissertation, University of Shiraz, Faculty of Veterinary Medicine. (In Farsi)
Abou-Arab, A. A. K. (2002). Degradation of organochlorine pesticides by meat starter in liquid media and fermented sausage. Food and Chemical Toxicology, (40), 33-41.
Abou-Raya, S. H., Shalaby, A. R., Salama, N. A., Emam, W. H., Mehaya, F. M. (2013). Effect of ordinary cooking procedures on tetracycline residues in chicken meat. Journal of Food and Drug Analysis, (21), 80-86.
Afnan, M. & Kashani, M. (1972). Study on the contamination of raw milk with antibiotics. Ph. D. dissertation, University of Tehran, Faculty of Veterinary Medicine. (In Farsi)
Akbari Kishi, S., Asmar, M., Mirpour, M. S. (2017). The Study of Antibiotic Residues in Raw and Pasteurized Milk in Gilan Province. Iranian Journal of Medical Microbiology, 11(3), 71-77. (In Farsi)
Alaboudi, A., Basha, E. A., Musallam, I. (2013). Chlortetracycline and sulfanilamide residues in table eggs: Prevalence, distribution between yolk and white and effect of refrigeration and heat treatment. Food Control, (33), 281-286.
Alebachew, T., Lamessa, J., Ayichew, T., Abebaw, G. (2016). Review on chemical and drug residue in meat. World Journal of Agricultural Sciences, (12) 196-204.
Attari Barough, M. (1979). On the contamination of raw milk with antibiotics residues in Tehran. Ph. D. dissertation, University of Tehran, Faculty of Veterinary Medicine. (In Farsi)
Azizi, A. (2011). In M. Stoycheva M (Ed). Bacterial-degradation of pesticides residue in vegetables during fermentation. Pesticides-formulations, effects, fate. (pp 651-660). Tech, Rijeka, Croatia.
Babapour, A., Azami, L., Fartashmehr, J. (2012). Overview of antibiotic residues in beef and mutton in Ardebil, North West of Iran. World Applied Sciences Journal, (19), 1417-1422.
Bahreinipour, A., Mohsenzadeh, M. (2009). Identification of Antimicrobial Residual Compounds in Raw and Pasteurized Milk by Yoghurt Culture Test. Scientific-Research Iranian Vaterinary Journal, 3(24), 5-11. (In Farsi)
Bajwa, U., Sandhu, K. S. (2014). Effect of handling and processing on pesticide residues in food: A review. Journal of Food Science and Technology, (51), 201-220.
Baynes, R. E., Payne, M., Martin-Jimenez, T., Abdullah, A. R., Anderson, K. L., Webb, A. I., Craigmill, A., Riviere, J. E. (2000). Extralabel use of ivermectin and moxidectin in food animals. Journal of the American Veterinary Medical Association, (217), 668-671.
Bennema, S. C., Vercruysse, J., Morgan, E., Stafford, K., Hoglund, J., Demeler, J., von Samson-Himmelstjerna, G., Charlier, J. (2010). Epidemiology and risk factors for exposure to gastrointestinal nematodes in dairy herds in northwestern Europe. Veterinary Parasitology, (173), 247-254.
Beyene, T. (2016). Veterinary drug residues in food-animal products: Its risk factors and potential effects on public health. Journal of Veterinary Science and Technology, (7), 1-7.
Cabizza, R., Rubattu, N., Salis, S., Pes, M., Comunian, R., Paba, A., Daga, E., Addis, M., Testa, M., Urgeghe, P. P. (2018). Impact of a thermisation treatment on oxytetracycline spiked ovine milk: Fate of the molecule and technological implications. Food Science and Technology, (96), 236-243.
Canton, L., Alvarez, L., Canton, C., Ceballos, L., Farias, C., Lanusse, C., Moreno, L. (2019). Effect of cooking on the stability of veterinary drug residues in chicken eggs. Food Additives and Contaminants, 36 (7), 1055-1067.
Cooper, K. M., Whelan, M., Danaher, M., Kennedy, D. G. (2011). Stability during cooking of anthelmintic veterinary drug residues in beef. Food Additives and Contaminants, 28 (2), 155-165.
Cooper, K. M., Whelan, M., Kennedy, D. G., Trigueros, G., Cannavan, A., Boon, P. E., Wapperom, D., Danaher, M. (2012). Anthelmintic drug residues in beef: UPLC-MS/MS method validation, European retail beef survey, and associated exposure and risk assessments. Food Additives and Contaminants, (29), 746-760.
Dabagh Moghadam, A., Bashashati, M., Hosseini-Shokouh, S. J., Hashemi, S. R. (2017). Antibiotic residues in chicken meat and table eggs consumed in Islamic Republic of Iran Army. Journal of Food Hygiene, 7 (26), 67-107. (In Farsi)
Daeseleire, E., Pamel, E. V., Poucke, C. V., Croubels, S. (2017). Veterinary Drug Residues in Foods. Chemical Contaminants and Residues in Food, 117-153.
Donoghue, D. J., Myers, K. (2000). Imaging residue transfer into egg yolks. Journal of Agricultural and Food Chemistry, (48), 6428-6430.
EC-European Commission. (2012). Commission staff working document on the implementation of national residue monitoring plans in the member states in 2009 (Council Directive 96/23/EC). Accessed at Mar 30, 2019, from https://ec.europa.eu/food/sites/food/files/safety/docs/cs_vet-med-residues_workdoc_2009_en.pdf
Ehsani, A. & Hashemi, M. (2015). Determination of Antibacterial Drug Residues in Commercial Eggs Distributed in Urmia, Iran. Journal of Food Quality and Hazards Control, (2), 61-65.
Ehsani, A., Fazlara, A., Maktabi, S., Najafzadeh, H. (2010). Measurement of Tetracycline residue in consumed Broiler meats in Ahvaz City by HPLC. Journal of Veterinary Medicine and Laboratory, (2), 119-129. (In Farsi)
Elizabeta, D. S., Zehra, H. M., Biljana, S. D., Pavle, S., Risto, U. (2011). Screening of veterinary drug residues in milk from individual farms in Macedonia. Macedonian Veterinary Review, (34), 5-13.
Ellerbrock, L. I., Steffen, G. (2007). Effect of pasteurization and fermentation on residues of sulfonamides in sausages. International Journal of Food Science and Technology, (26), 479-483.
Escanilla, O. I., Carlin, A. F., Ayres, J. C. (1959). Effect of storage and of cooking on chlortetracycline residues in meat. Food Technology, (13), 520-524.
Fath El-Bab, G. F. A. (2012). Residues of some antibiotics in table eggs in some private farms. Journal of the Egyptian Medical Association, (72), 69-80.
Filazi, A., Sireli, U. T., Dikmen, B. Y., Aydin, F. G., Kucukosmanoglu, A. G. (2015). The effect of cooking and storage on florfenicol and florfenicol amine residues in eggs. Italian Journal of Food Science, (27), 351-356.
Franje, C. A., Chang, S. K., Shyu, C. L., Davis, J. L., Lee, Y. W., Lee, R. J., Chang, C. C., Chou, C. C. (2010). Differential heat stability of amphenicols characterized by structural degradation, mass spectrometry and antimicrobial activity. Journal of Pharmaceutical and Biomedical Analysis, (53), 869-877.
Furusawa, N., Hanabusa, R. (2002). Cooking effects on sulfonamide residues in chicken thigh muscle. Food Research International, (35), 37-42.
Gajda, A., Bladek, T., Gbylik-Sikorska, M., Posyniak, A. (2017). The influence of cooking procedures on doxycycline concentration in contaminated eggs. Food Chemistry, 15(221), 1666-1670.
Gallo, P., Fabbrocino, S., Dowling, G., Salini, M., Fiori, M., Perretta, G., Serpe, L. (2010). Confirmatory analysis of non-steroidal antiinflammatory drugs in bovine milk by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography A, (1217), 2832-2839.
Gaurav, A., Gill, J. P. S., Aulakh, R. S., Bedi, J. S. (2014). ELISA based monitoring and analysis of tetracycline residues in cattle milk in various districts of Punjab. Veterinary World, (7), 26-29.
Ghanavi, Z. (2003). Determination of Penicillin G reside in raw and pasteurized milk from Tehran Dairy Industries Dairy Plant. Institute of Standards and Industrial Research. Qazvin Province.
Gratacos-Cubarsi, M., Fernandez-Garcia, A., Picouet, P., Valero-Pamplona, A., Garcia-Regueiro, J. A., Castellari, M. (2007). Formation of tetracycline degradation products in chicken and pig meat under different thermal processing conditions. Journal of Agricultural and Food Chemistry, (55), 4610-4616.
Grote, M., Vockel, A., Schwarze, D., Mehlich, A., Freitag, M. (2004). Fate of antibiotics in food chain and environment originating from pigfattening (Part 1). Fresenius Environmental Bulletin, 13 (11), 1216-1224.
Grunwald, L., Petz, M. (2003). Food processing effects on residues: Penicillins in milk and yoghurt. Analytica Chimica Acta, (483), 73-79.
Hadizadeh Mo’alem, S. (2005). Determination of drug residue in poultry’s flesh in poultry farms of Babol by Premitest Method. Iranian Journal of Veterinary Sciences, 2(2), 153-156. (In Farsi)
Hamid, A., Yaqub, G., Ahmed, S. R., Aziz, N. (2017). Assessment of human health risk associated with the presence of pesticides in chicken eggs. Food Science and Technology, (37), 378-382.
Han, R. W., Zheng, N., Yu, Z. N., Wang, J., Xu X. M., Qu, X. Y., Li, S. L., Zhang, Y. D., Wang, J. Q. (2015). Simultaneous determination of 38 veterinary antibiotic residues in raw milk by UPLC-MS/MS. Food Chemistry, (181), 119-126.
Hashemy-Tonkabony, S. E., Mosstofian, B. (1979). Chlorinated pesticide residues in chicken egg. Poultry Science, (58), 1432-1434.
Heshmati, A. (2015). Impact of cooking procedures on antibacterial drug residues in foods: A review. Journal of Food Quality and Hazards Control, (2), 33-37.
Heshmati, A., Kamkar, A., Salaramoli, J., Hassan, J., Jahed, Gh. (2014). Effect of deep-frying processing on tylosin residue in meat. Journal of Food Science and Technology, (12), 61-71. (In Farsi)
Heshmati, A., Salaramoli, J., Kamkar, A., Hassan, J., Jahed, Gh. (2014). Experimental study of the effects of cooking methods on tilmicosin residues in chicken. Journal of Veterinary Research, 69 (3), 283-290. (In Farsi)
Hsieh, M. K., Shyu, C.L., Liao, J. W., Franje, C. A., Huang, Y. J., Chang, S. K., Shih, P.Y., Chou, C. C. (2011). Correlation analysis of heat stability of veterinary antibiotics by structural degradation, changes in antimicrobial activity and genotoxicity. Veterinary Medicine, (56), 274-285.
Inglis, J. M., Katz, S. E. (1978). Determination of streptomycin residues in eggs and stability of residues after cooking. Association of Official Analytical Chemists, (61), 1098-1102.
Ismail-Fitry, M. R., Jinap, S., Jamilah, B., Saleha, A. A. (2011). Effect of Different Time and Temperature of Various Cooking Methods on Sulfonamide Residues in Chicken Balls. Environmental Earth Sciences, 607-613.
Javadi, A. (2011). Effect of roasting, boiling and microwaving cooking method on doxycline residues in edible tissues of poultry by microbial method. African Journal of Pharmacy and Pharmacology, (5), 1034-1037.
Javadi, A., Mirzaei, H., Khatibi, S. A., Manaf Hosseyni, A. (2011). Experimental study on effect of roasting, boiling and microwave cooking methods on enrofloxacin antibiotic residues in edible poultry tissues. Journal of Islamic Azad University Tabriz Branch, 5(3),1259-1265.
Jedziniak, P., Szprengier-Juszkiewicz, T., Pietruk, K., Sledzinska, E., Zmudzki, J. (2012). Determination of non-steroidal antiinflammatory drugs and their metabolites in milk by liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, (403), 2955-2963.
Kadykalo, S., Roberts, T., Thompson, M., Wilson, J., Lang, M., Espeisse, O. (2018). The value of anticoccidials for sustainable global poultry production. International Journal of Antimicrobial Agents, (51), 304-310.
Kan, C. A., Petz, M. (2000). Residues of veterinary drugs in eggs and their distribution between yolk and white. Journal of Agricultural and Food Chemistry, (48), 6397-6403.
Kang, J., Park, H. C., Gedi, V., Park, S. J., Kim, M. A., Kim, M. K., Kwon, H. J., Cho, B. H., Kim, T. W., Lee, K. J., Lim, C. M. (2015). Veterinary drug residues in domestic and imported foods of animal origin in the Republic of Korea. Food Additives and Contaminants, (8), 106-112.
Kara, R., Ince, S. (2016). Evaluation of malathion and malaoxon contamination in buffalo and cow milk from Afyonkarahisar region, Turkey, using liquid chromatography/tandem mass spectrometry-a short report. Polish Journal of Food and Nutrition Sciences, (66), 57-60.
Karim, G. & Navabpour, S. (1993). Survey on the raw milk contamination with anabiotic residue.  In: Proceedings of 11th International symposim of Vaterinary Food Hygienists. Bangkok, Thailand. pp. 209-211.
Karim, G., Kiaei, S. M. M., Rokni, N., Razavi Rouhani, S. M. (2011). Antibiotic residue contamination in milk during last forty years in Iran. Journal of Food Hygiene, (1), 23-30. (In Farsi)
Katz, S. E., Levine, P. R. (1978). Determination of neomycin residues in eggs and stability of residues after cooking. Association of Official Analytical Chemists, (61),1103-1106.
Kellnerova, E., Navratilova, P., Borkovcova, I. (2014). Effect of pasteurization on the residues of tetracyclines in milk. Acta Veterinaria Brunensis, (83), 21-26.
Keshavarzi, M. (2015). Investigation of the presence of antibiotics in livestock and bulk milk in Kerman city by coupon test method. M. Sc. dissertation, Islamic Azad University of Yazd Branch, Faculty of Agriculture and Natural Resources. (In Farsi)
Khavari Khorasani, H. (1962). Survey on the antibiotics in milk. Ph. D. dissertation, University of Tehran, Faculty of Veterinary Medicine. (In Farsi)
Kibruyesfa, B., Naol, H. (2017). Review on antibiotic residues in food of animal origin: Economic and public health impacts. Applied Journal of Hygiene, (6), 1-8.
Kim, M., Cho, B. H., Lim, C. M., Kim, D. G., Yune, S. Y., Shin, J. Y., Bong, Y. H., Kang, J., Kim, M. A., Son, S. W. (2013). Chemical residues and contaminants in foods of animal origin in Korea during the past decade. Journal of Agricultural and Food Chemistry, (61), 2293-2298.
Kohanski, M. A., Dwyer, D. J., Collins, J. J. (2010). How antibiotics kill bacteria: From targets to networks. Nature Reviews Microbiology, (8), 423-435.
Lanyi, K., Laszlo, N., Laczay, P. (2016). Heat stability of veterinary antibiotics in cow milk. Department of Food Hygiene, University of Veterinary Medicine, Budapest, Hungary. From https://www.researchgate.net/.
Laszlo, N., Lanyi, K., Laczay, P. (2018). LC-MS study of the heat degradation of veterinary antibiotics in raw milk after boiling. Food Chemistry, (267), 178-186.
Lee, J. S., Cho, S. H., Lim, C. M., Chang, M. I., Joo, H. J., Bae, H., Park, H. J. (2017). A liquid chromatography-tandem mass spectrometry approach for the identification of mebendazole residue in pork, chicken, and horse. Plos One, (12), 0169597.
Mahmoodi Kordi, F. (2016). Study of antibiotic residues in raw and pasteurized milk produced in Shahrekord city by two methods of yogurt test and four-plate test. M. Sc. dissertation, University of Shahrekord, Faculty of Veterinary Medicine. (In Farsi)
Mahmoudi, R., Amini, K., Vagef, R., Vahab, M., Mir, H., Vagef, R. (2014). Antibiotics residues in raw and pasteurized milk, Iran. Journal of Research and Health, 4 (4), 884-889.
Mahmoudi, R., Asadpour, R., Pajouhi alamoti, M. R., Golchin, A., Kiyani, R., Mohammadpour, R. (2013). Raw cow milk quality: Relationship between antibiotic residue and Somatic cell count. International Food Research Journal, 20(6), 3347-3350.
Mahmoudi, R., Golchin, A., Farhoodi, A. (2014). A Review on Antibiotic Residues in Animal-derived Foods in Iran over the Last Thirty Years. Journal of Mazandaran University of Medical Sciences, (24), 213-222. (In Farsi)
Mahmoudi, R., Norian, R. (2015). Determination of enrofloxacin residue in chicken eggs using FPT and ELISA methods. Journal of Research and Health, 5(2), 159-164.
Mahmoudi, R., Norian, R., Gajarbeygi, P.  (2014). Survey of antibiotic residues in raw milk samples from Qazvin province. Journal of Qazvin University of Medical Science, 18(1), 45-52. (In Farsi)
Manafi, M., Hesari, J., Rafat, S. A. (2011). Monitoring of Antibiotic Residue in Raw and Pasteurised Milk in East Azerbaijan of Iran by Delvotest Method. Journal of Food Research, (2), 125-131. (In Farsi)
Mansouri Nagand, L. (2001). Survey on the raw milk contamination with antibiotic residues in kerman city. In: 4th National Symposium of Environmental Health. 6-8 Now. Yazd.
Marni, S., Marzura, M. R., Eddy, A. A., Suliana, A. K. (2017). Veterinary drug residues in chicken, pork and beef in peninsular Malaysia in the period 2010–2016. Malaysian Journal of Veterinary Research, (8), 71-77.
Mashak, Z., Mojaddar Langroodi, A., Mehdizadeh, T., Ebadi Fathabad, A., HoomanAsadi, A. (2017). Detection of quinolones residues in beef and chicken meat in hypermarkets of Urmia, Iran using ELISA. Iran Agricultural Research, 36(1), 73-77.
Matus, J. L., Boison, J. O. (2016). A multi‐residue method for 17 anticoccidial drugs and ractopamine in animal tissues by liquid chromatography‐tandem mass spectrometry and time‐of‐flight mass spectrometry. Drug Testing and Analysis, (8), 465-476.
Mehtabuddin, A., Ahmad, T., Nadeem, S., Tanveer, Z., Arshad, J. (2012). Sulfonamide residues determination in commercial poultry meat and eggs. Journal of Animal and Plant Sciences, (22), 473-478.
Moarefi, F. (1993). Survey on the antibiotic contamination in milk. Ph. D. dissertation, Islamic Azad University of Tehran, Faculty of Pharmacy. (In Farsi)
Mohamadi Sani, A., Khezri, M., Maleki Nejhad, S. (2015). Detection of tetracycline and sulfonamide residues in raw milk of Mashhad city by competitive ELISA method. Journal of Innovation in Food Science and Technology, 7(3), 77-83. (In Farsi)
Mohamadi Sani, A., Nikpooyan, H., Moshiri, R. (2010). Aflatoxin M1 contamination and antibiotic residue in milk in Khorasan province, Iran. Food and Chemical Toxicology, (48), 2130-2132.
Mohammadian, B., Kezri, M., Vosughi, K., Keykhosravi, K. (2003). Determination of antibiotic residues in poultry by using Four Plates Test in Sanandaj. Journal of Kurdistan University of Medical Sciences, 7(4), 21-30. (In Farsi)
Mortier, L., Huet, A. C., Charlier, C., Daeseleire, E., Delahaut, P., Van Peteghem, C. (2005). Incidence of residues of nine anticoccidials in eggs. Food Additives and Contaminants, (22), 1120-1125.
Movasagh, M. (2012). Detection of antibiotic residues in raw cow's milk in Eilikhchi (Southwest of Tabriz). Journal of food technology and nutrition of Iran, 9(3), 214-221.
O'Brien, J. J., Campbell, N., Conaghan, T. (1981). Effect of cooking and cold storage on biologically active antibiotic residues in meat. Journal of hygiene, (87), 511-523.
Peek, H. W., Landman, W. J. M. (2011). Coccidiosis in poultry: Anticoccidial products, vaccines and other prevention strategies. Veterinary Quarterly, (31), 143-161.
Pura, R. S. (2013). Anticoccidial drugs used in the poultry: An overview. Science International, (1), 261-265.
Rahimabadi, E., Asadpour, Y., Sayeban, P. (2016). Survey on the tetracycline and oxytetracycline residues from milk collecting centers of Guilan by HPLC method. Iranian Veterinary Journal, 12(1):135-118. (In Farsi)
Rahimi, E., Shakerian, A., Asadi, A. (2017). Determination of Sulfonamide Antibiotic Residues in Milk, Meat, and Egg Using ELISA Method. Quarterly Official Journal of Mashhad University of Medical Sciences, 20(63), 1-8. (In Farsi)
Rakotoharinome, M., Pognon, D., Randriamparany, T., Ming, J. C., Idoumbin, J. P., Cardinale, E., Porphyre, V. (2014). Prevalence of antimicrobial residues in pork meat in Madagascar. Tropical Animal Health and Production, (46), 49-55.
Rana, M. S., Lee, S. Y. P., Kang, H. J., Hur, S. J. (2019). Reducing Veterinary Drug Residues in Animal Products: A Review. Food Science of Animal Resources, 39(5), 687-703.
Rassouli, A., Abdolmaleki, Z., Bokaee, S., Kamkar, A., Shams, G. R. (2010) A cross sectional study on Oxytetracycline and Tetracycline residues in pasteurized milk supplied in Tehran by an HPLC method. International Journal Veterinary Research, 4 (1), 1-3.
Rasuli, F. (1998). Determine the level of antibiotic residues in eggs consumed in Urmia. Research Project. Urmia University.
Regal, P., Lamas, A., Fente, C. A., Cepeda, A. (2021). Influence and Detection of the Residues of Veterinary Formulations in Foods. Comprehensive Foodomics, 208-223.
Regueiro, J., Lopez-Fernandez, O., Rial-Otero, R., Cancho-Grande, B., Simal-Gandara, J. (2015). A review on the fermentation of foods and the residues of pesticides-biotransformation of pesticides and effects on fermentation and food quality. Critical Reviews in Food Science and Nutrition, (55), 839-863.
Roca, M., Althaus, R. L., Molina, M. P. (2013). Thermodynamic analysis of the thermal stability of sulphonamides in milk using liquid chromatography tandem mass spectrometry detection. Food Chemistry, (136), 376-383.
Roca, M., Castillo, M., Marti, P., Althaus, R. L., Molina, M. P. (2010). Effect of heating on the stability of quinolones in milk. Journal of Agricultural and Food Chemistry, (58), 5427-5431.
Roca, M., Villegas, L., Kortabitarte, M. L., Althaus, R. L., Molina, M. P. (2011). Effect of heat treatments on stability of β-lactams in milk. Journal of Dairy Science, (94), 1155-1164.
Rocca, L. M., Gentili, A., Perez-Fernandez, V., Tomai, P. (2017). Veterinary drugs residues: A review of the latest analytical research on sample preparation and LC-MS based methods. Food Additives and Contaminants, (34), 766-784.
Rokni, N., Kamkar, A., Salehzadeh, F., Madani, R. (2007). Study on the Enrofloxacin Residues in Chicken Tissues by HPLC. International Journal of Food Science and Technology, 4(2), 11-17. (In Farsi)
Salaramoli, J., Heshmati, A., Kamkar, A., Hassan, J. (2015). Effect of cooking procedures on tylosin residues in chicken meatball. Journal of Consumer Protection and Food Safety, 11(1), 53-60.
Salas, J. H., Gonzalez, M. M., Noa, M., Perez, N. A., Diaz, G., Gutierrez, R., Zazueta, H., Osuna, I. (2003). Organophosphorus pesticide residues in Mexican commercial pasteurized milk. Journal of Agricultural and Food Chemistry, (51), 4468-4471.
Samadi, A. (2017). Evaluation of beta-lactam antibiotic residue and determination of penicillin G in raw milk delivered to dairy factories in 5 geographical areas in hot and cold seasons. M. Sc. dissertation, Islamic Azad University of Safadasht Branch. (In Farsi)
Scheibner, G. (1972a). Studies into the effect of scalded sausage technology on certain antibiotics. Monatsch Velernaerrned, (27), 161-164.
Shahani, K. M. (1957). The effect of heat and storage on the stability of Aureomycin in milk, buffer, and water. Journal of Dairy Science,, (40), 289-296.
Shahani, K. M. (1958). Factors affecting Terramycin activity in milk, broth, buffer, and water.Journal of Dairy Science, (41), 382-391.
Shahani, K. M. (1978). Effect of temperature and time on reduction of the biological activity of some kinds of antibiotics in milk. Veternarstvi, (28), 409-410.
Shahani, K. M., Gould, L. A., Weiser, H. H., Slatter, W. L. (1956). Stability of smaIl concentrations of penicillin in milk as affected by heat treatment and storage. Journal of Dairy Science, (39), 971-977.
Shahbazi, Y., Hashemi, M., Afshari, A., Karami, N. )2015(. A survey of antibiotic residues in commercial eggs in Kermanshah, Iran. Iranian Journal of Veterinary Science and Technology, 7(2), 57-62.
Shahroozian, E., Khoshgoftar, J. (2015). A preliminary study of gentamicin residual poultry products in semnan city. Journal of Veterinary Laboratory Research, (7), 21-26. (In Farsi)
Shaker, E. M., Elsharkawy, E. E. (2015). Organochlorine and organophosphorus pesticide residues in raw buffalo milk from agroindustrial areas in Assiut, Egypt. Environ Toxicol Pharmacol, (39), 433-440.
Shaltout, F. A. E., Shatter, M. A. E., Sayed, N. F. (2019). Impacts of Different Types of Cooking and Freezing on Antibiotic Residues in Chicken Meat. Journal of Food Science and Nutrition, (5), 045.
Shitandi, A. A., Aila, O., Ottaro, S., Aliong’o, L., Mwangi, G., Kumar- Sharma, H., Joseph, M. (2008). Effect of deep frying on furazolidone anticoccidial drug residues in liver and muscle tissues of chicken. African Journal of Food Science, (2), 144-148.
Singh, S. (2017). Studies on the effect of different processing methods on the levels of pesticide residues in milk, meat and their products. Ph.D. dissertation, P.V. Narsimha Rao Telangana Veterinary Univ., Telangana, India.
Slanina, P., Kuivinen, J., Ohlsen, C., Ekstrom, L. G. (1989). Ivermectin residues in the edible tissues of swine and cattle: Effect of cooking and toxicological evaluation. Food Additives and Contaminants, (6), 475-481.
Smit, L. A., Hoogenboom, L. A. P., Berghmans, M. C. J., Haagsma, N. (1994). Stability of sulfadimidine during raw fermented sausage preparation. Zeitschrift für Lebensmittel-Untersuchung und Forschung, (198), 480-485.
Sobral, M., Romero-Gonzalez, R., Faria, M., Cunha, S., Mplvo Ferreira, I., Garrido-Frenich, A. (2020). Stability of antibacterial and coccidiostat drugs on chicken meat burgers upon cooking and in vitro digestion. Food Chemistry, 316.
Sultan, I. A. (2014). Detection of enrofloxacin residue in livers of livestock animals obtained from a slaughterhouse in Mosul City. Journal of Veterinary Science and Technology, (5), 168.
Tajick, M. A., Shohreh, B. (2006). Detection of Antibiotics Residue in Chicken Meat Using TLC. International Journal of Poultry Science, 5(7), 611-612.
Tayebi, l., Mahmoudian, M., Falahatpishe, H., Dabbagh Moghadam, A., Falahati, F., Kosari, N. (2008). Screening of the Tetracycline Residues in Different Brands of Pasteurized Milks Distributed in Tehran, Iran. In: 1th International congress of veterinary Pharmacology & pharmaceutical sciences, Shahrekord City, Iran. (In Farsi)
Teagasc. (2011). National food residue database, Accessed at Jan 16, 2019, from http://nfrd.teagasc.ie
Toldra´, F., Reig, M. (2006). Methods for rapid detection of chemical and veterinary drug residues in animal foods. Trends in Food Science and Technology, (17), 482-489.
Torbati, M. A., Shamshiri, M., Javadi, A., Hassan, J., Jahed, Gh. (2011). Detection of antibiotic residues in edible tissue of slaughtered cows in Tabriz abattoir with FPT method. Journal of Food Hygiene, 1 (2), 29-37. (In Farsi)
Vahedi, N., Motaghedi, A., Golchin, M. (2011). Determination of antibiotic residues in industrial poultry carcass by means of F.P.T (four-plate-test) method in Mazandaran province. Iranian Food Science and Technology, 8(1), 65-71.
Vivienne, E. E, Josephine, O. K. O, Anaelom, N. J. (2018). Effect of temperature (cooking and freezing) on the concentration of oxytetracycline residue in experimentally induced birds. Veterinary World, (11), 167-171.
Xuan, R., Arisi, L., Wang, Q., Yates, S. R., Biswas, K. C. (2010). Hydrolysis and photolysis of oxytetracycline in aqueous solution. Journal of Environmental Science and Health, (45), 73-81.
Yamaguchi, T., Okihashi, M., Harada, K., Konishi, Y., Uchida, K., Do, M. H. N., Bui, H. D., Nguyen, T. D., Nguyen, P. D., Chau, V. V., Dao, K. T. V., Nguyen, H. T., Kajimura, K., Kumeda, Y., Bui, C. T., Vien, M. Q., Le, N. H., Hirata, K., Yamamoto, Y. (2015). Antibiotic residue monitoring results for pork, chicken, and beef samples in Vietnam in 2012–2013. Journal of Agricultural and Food Chemistry, (63), 5141-5145.
Yonova, I. (1971) Studies on the thermal resistance of tetracycline and oxytetracycline residues in eggs and poultry meat. Veterinarnomed Nauki, 8(10), 75-82.
Zandieh Moradi, R., Soltan Dallal, M. M. (2017). Evaluating the amount of antibiotic residues in raw milk samples obtained from cows in Borujerd city. Journal of Jiroft University of Medical Sciences, 3(3), 193-200. (In Farsi)
Zarangush, Z., Mahdavi, S. (2015). Determination of Antibiotic Residues in Pasteurized and Raw Milk in Maragheh and Bonab Counties by Four Plate test (FPT) Method. Scientific Journal of Ilam University of Medical Sciences, 24(5), 48-54. (In Farsi)
Zarean Baniasadi, F., Ahmadi, M., Rokni, N., Golestan, L., Shahidi Yasaghi, A. (2019). Evaluation of four common antibiotic classes in the muscle and liver of chickens slaughtered tehran by LC-MS/MS. Veterinary Researches and Biological Products, (124), 55-63. (In Farsi)
Zayerzadeh, E., Koohi M. K., Fardipoor, A., Rashedi, H. (2011). Study of enrofloxacin residue in eggs using high performance liquid chromatography. Iranian Journal of Food Science and Technology, 8 (29), 67-71. (In Farsi)
Zhang, H., Chai, Z. F., Sun, H. B., Zhang, J. L. (2006). A survey of extractable persistent organochlorine pollutants in Chinese commercial yogurt. Journal of Dairy Science, (89), 1413-1419.
Zhao, X., Wang, B., Xie, K., Liu, J., Zhang, Y., Wang, Y., Wang, J. (2018). Development and comparison of HPLC-MS/MS and UPLCMS/MS methods for determining eight coccidiostats in beef. Journal of Chromatography B, (1087-1088), 98-107.
Zorraquino, M. A., Althaus, R. L., Roca, M., Molina, M. P. (2009). Effect of heat treatments on aminoglycosides in milk. Journal of Food Protection, (72), 1338-1341.
Zorraquino, M. A., Althaus, R. L., Roca, M., Molina, M. P. (2011). Heat treatment effects on the antimicrobial activity of macrolide and lincosamide antibiotics in milk. Journal of Food Protection, (74), 311-315.