Abnisa, F., Arami-Niya, A., Wan Daud, W. M. A., Sahu, J. N., & Noor, I. M. (2013). Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Conversion and Management, 76, 1073–1082. https://doi.org/10.1016/j.enconman.2013.08.038
Akhtar, J., & Saidina Amin, N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews, 16(7), 5101–5109. https://doi.org/10.1016/j.rser.2012.05.033
Al-Sabawi, M., Chen, J., & Ng, S. (2012). Fluid Catalytic Cracking of Biomass-Derived Oils and Their Blends with Petroleum Feedstocks: A Review. Energy & Fuels, 26(9), 5355–5372. https://doi.org/10.1021/ef3006417
Awasthi, M. K., Sindhu, R., Sirohi, R., Kumar, V., Ahluwalia, V., Binod, P., Juneja, A., Kumar, D., Yan, B., Sarsaiya, S., Zhang, Z., Pandey, A., & Taherzadeh, M. J. (2022). Agricultural waste biorefinery development towards circular bioeconomy. Renewable and Sustainable Energy Reviews, 158, 112122. https://doi.org/10.1016/j.rser.2022.112122
Basu, P. (2018). Biomass Gasification, Pyrolysis and Torrefaction. Elsevier. https://doi.org/10.1016/C2016-0-04056-1
Campbell, R. M., Anderson, N. M., Daugaard, D. E., & Naughton, H. T. (2018). Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty. Applied Energy, 230, 330–343. https://doi.org/10.1016/j.apenergy.2018.08.085
Carpenter, D., Westover, T. L., Czernik, S., & Jablonski, W. (2014). Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem., 16(2), 384–406. https://doi.org/10.1039/C3GC41631C
Chakraborty, B., & Murphy, S. A. (2014). Dynamic Treatment Regimes. Annual Review of Statistics and Its Application, 1(1), 447–464. https://doi.org/10.1146/annurev-statistics-022513-115553
Chen, D., Cen, K., Zhuang, X., Gan, Z., Zhou, J., Zhang, Y., & Zhang, H. (2022). Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio‐oil. Combustion and Flame, 242, 112142. https://doi.org/10.1016/j.combustflame.2022.112142
Chen, W.-H., Lin, B.-J., Lin, Y.-Y., Chu, Y.-S., Ubando, A. T., Show, P. L., Ong, H. C., Chang, J.-S., Ho, S.-H., Culaba, A. B., Pétrissans, A., & Pétrissans, M. (2021). Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science, 82, 100887. https://doi.org/10.1016/j.pecs.2020.100887
Chen, X., Zhang, H., Song, Y., & Xiao, R. (2018). Prediction of product distribution and bio-oil heating value of biomass fast pyrolysis. Chemical Engineering and Processing - Process Intensification, 130(February), 36–42. https://doi.org/10.1016/j.cep.2018.05.018
Crisci, C., Ghattas, B., & Perera, G. (2012). A review of supervised machine learning algorithms and their applications to ecological data. Ecological Modelling, 240, 113–122. https://doi.org/10.1016/j.ecolmodel.2012.03.001
De Clercq, R., Dusselier, M., & Sels, B. F. (2017). Heterogeneous catalysis for bio-based polyester monomers from cellulosic biomass: advances, challenges and prospects. Green Chem., 19(21), 5012–5040. https://doi.org/10.1039/C7GC02040F
Di Blasi, C., Galgano, A., & Branca, C. (2009). Influences of the Chemical State of Alkaline Compounds and the Nature of Alkali Metal on Wood Pyrolysis. Industrial & Engineering Chemistry Research, 48(7), 3359–3369. https://doi.org/10.1021/ie801468y
Ding, Y., Ezekoye, O. A., Zhang, J., Wang, C., & Lu, S. (2018). The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass. Fuel, 232, 147–153. https://doi.org/https://doi.org/10.1016/j.fuel.2018.05.140
Dong, Z., Bai, X., Xu, D., & Li, W. (2023). Machine learning prediction of pyrolytic products of lignocellulosic biomass based on physicochemical characteristics and pyrolysis conditions. Bioresource Technology, 367, 128182. https://doi.org/10.1016/j.biortech.2022.128182
Foong, S. Y., Liew, R. K., Yang, Y., Cheng, Y. W., Yek, P. N. Y., Wan Mahari, W. A., Lee, X. Y., Han, C. S., Vo, D.-V. N., Van Le, Q., Aghbashlo, M., Tabatabaei, M., Sonne, C., Peng, W., & Lam, S. S. (2020). Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chemical Engineering Journal, 389, 124401. https://doi.org/10.1016/j.cej.2020.124401
Gani, A., & Naruse, I. (2007). Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable Energy, 32(4), 649–661. https://doi.org/10.1016/j.renene.2006.02.017
Gautam, P., Neha, Upadhyay, S. N., & Dubey, S. K. (2020). Bio-methanol as a renewable fuel from waste biomass: Current trends and future perspective. Fuel, 273, 117783. https://doi.org/10.1016/j.fuel.2020.117783
Ghafarian, F., Wieland, R., Lüttschwager, D., & Nendel, C. (2022). Application of extreme gradient boosting and Shapley Additive explanations to predict temperature regimes inside forests from standard open-field meteorological data. Environmental Modelling & Software, 156, 105466. https://doi.org/10.1016/j.envsoft.2022.105466
Harrison, J. H., Gilbertson, J. R., Hanna, M. G., Olson, N. H., Seheult, J. N., Sorace, J. M., & Stram, M. N. (2021). Introduction to Artificial Intelligence and Machine Learning for Pathology. Archives of Pathology & Laboratory Medicine, 145(10), 1228–1254. https://doi.org/10.5858/arpa.2020-0541-CP
Hassan, E. M., Steele, P. H., & Ingram, L. (2009). Characterization of Fast Pyrolysis Bio-oils Produced from Pretreated Pine Wood. Applied Biochemistry and Biotechnology, 154(1–3), 3–13. https://doi.org/10.1007/s12010-008-8445-3
Haykiri-Acma, H. (2006). The role of particle size in the non-isothermal pyrolysis of hazelnut shell. Journal of Analytical and Applied Pyrolysis, 75(2), 211–216. https://doi.org/10.1016/j.jaap.2005.06.002
Hodge, V. J., & Austin, J. (2004). A Survey of Outlier Detection Methodologies. Artificial Intelligence Review, 22(2), 85–126. https://doi.org/10.1007/s10462-004-4304-y
Hough, B. R., Beck, D. A. C., Schwartz, D. T., & Pfaendtner, J. (2017). Application of machine learning to pyrolysis reaction networks: Reducing model solution time to enable process optimization. Computers and Chemical Engineering, 104, 56–63. https://doi.org/10.1016/j.compchemeng.2017.04.012
Kaczor, Z., Buliński, Z., & Werle, S. (2020). Modelling approaches to waste biomass pyrolysis: a review. Renewable Energy, 159, 427–443. https://doi.org/10.1016/j.renene.2020.05.110
Kasmuri, N. H., Kamarudin, S. K., Abdullah, S. R. S., Hasan, H. A., & Som, A. M. (2019). Integrated advanced nonlinear neural network-simulink control system for production of bio-methanol from sugar cane bagasse via pyrolysis. Energy, 168(2019), 261–272. https://doi.org/10.1016/j.energy.2018.11.056
Khan, M., Raza Naqvi, S., Ullah, Z., Ali Ammar Taqvi, S., Nouman Aslam Khan, M., Farooq, W., Taqi Mehran, M., Juchelková, D., & Štěpanec, L. (2023). Applications of machine learning in thermochemical conversion of biomass-A review. Fuel, 332, 126055. https://doi.org/10.1016/j.fuel.2022.126055
Kim, D., & Philen, M. (2011). Damage classification using Adaboost machine learning for structural health monitoring (M. Tomizuka (ed.); p. 79812A). https://doi.org/10.1117/12.882016
Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729. https://doi.org/10.1021/ie801542g
Kumar Sharma, A., Kumar Ghodke, P., Goyal, N., Nethaji, S., & Chen, W.-H. (2022). Machine learning technology in biohydrogen production from agriculture waste: Recent advances and future perspectives. Bioresource Technology, 364, 128076. https://doi.org/10.1016/j.biortech.2022.128076
Leng, E., He, B., Chen, J., Liao, G., Ma, Y., Zhang, F., Liu, S., & E, J. (2021). Prediction of three-phase product distribution and bio-oil heating value of biomass fast pyrolysis based on machine learning. Energy, 236, 121401. https://doi.org/10.1016/j.energy.2021.121401
Li, S., Cheng, S., & Cross, J. S. (2020). Homogeneous and Heterogeneous Catalysis Impact on Pyrolyzed Cellulose to Produce Bio-Oil. Catalysts, 10(2), 178. https://doi.org/10.3390/catal10020178
Liakos, K., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors, 18(8), 2674. https://doi.org/10.3390/s18082674
Liu, C., Wang, H., Karim, A. M., Sun, J., & Wang, Y. (2014). Catalytic fast pyrolysis of lignocellulosic biomass. Chem. Soc. Rev., 43(22), 7594–7623. https://doi.org/10.1039/C3CS60414D
Liu, M., Liu, X., Li, J., Ding, C., & Jiang, J. (2014). Evaluating total inorganic nitrogen in coastal waters through fusion of multi-temporal RADARSAT-2 and optical imagery using random forest algorithm. International Journal of Applied Earth Observation and Geoinformation, 33, 192–202. https://doi.org/10.1016/j.jag.2014.05.009
Madadian, E., Haelssig, J. B., & Pegg, M. (2020). A Comparison of Thermal Processing Strategies for Landfill Reclamation: Methods, Products, and a Promising Path Forward. Resources, Conservation and Recycling, 160, 104876. https://doi.org/10.1016/j.resconrec.2020.104876
Madhu, P., Matheswaran, M. M., & Periyanayagi, G. (2017). Optimization and characterization of bio-oil produced from cotton shell by flash pyrolysis using artificial neural network. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(23), 2173–2180. https://doi.org/10.1080/15567036.2017.1403508
Mateus, M. M., Bordado, J. M., & Galhano dos Santos, R. (2021). Estimation of higher heating value (HHV) of bio-oils from thermochemical liquefaction by linear correlation. Fuel, 302, 121149. https://doi.org/10.1016/j.fuel.2021.121149
Mathur, J., Baruah, B., & Tiwari, P. (2023). Prediction of bio‐oil yield during pyrolysis of lignocellulosic biomass using machine learning algorithms. The Canadian Journal of Chemical Engineering, 101(5), 2457–2471. https://doi.org/10.1002/cjce.24674
Maulud, D., & Abdulazeez, A. M. (2020). A Review on Linear Regression Comprehensive in Machine Learning. Journal of Applied Science and Technology Trends, 1(4), 140–147. https://doi.org/10.38094/jastt1457
Murali, N., Kucukkaya, A., Petukhova, A., Onofrey, J., & Chapiro, J. (2020). Supervised Machine Learning in Oncology: A Clinician’s Guide. Digestive Disease Interventions, 04(01), 073–081. https://doi.org/10.1055/s-0040-1705097
Nie, P., Roccotelli, M., Fanti, M. P., Ming, Z., & Li, Z. (2021). Prediction of home energy consumption based on gradient boosting regression tree. Energy Reports, 7, 1246–1255. https://doi.org/10.1016/j.egyr.2021.02.006
Norouzi, O., Taghavi, S., Arku, P., Jafarian, S., Signoretto, M., & Dutta, A. (2021). What is the best catalyst for biomass pyrolysis? Journal of Analytical and Applied Pyrolysis, 158, 105280. https://doi.org/10.1016/j.jaap.2021.105280
Özbay, G., & KÖKTEN, E. S. (2019). Modeling of Bio-Oil Production by Pyrolysis of Woody Biomass: Artificial Neural Network Approach. Journal of Polytechnic, 0900, 0–3. https://doi.org/10.2339/politeknik.659136
Pütün, A. E., Özbay, N., Apaydın Varol, E., Uzun, B. B., & Ateş, F. (2007). Rapid and slow pyrolysis of pistachio shell: effect of pyrolysis conditions on the product yields and characterization of the liquid product. International Journal of Energy Research, 31(5), 506–514. https://doi.org/10.1002/er.1263
Raghavendra. N, S., & Deka, P. C. (2014). Support vector machine applications in the field of hydrology: A review. Applied Soft Computing, 19, 372–386. https://doi.org/10.1016/j.asoc.2014.02.002
Rahman, M. M., Liu, R., & Cai, J. (2018). Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – A review. Fuel Processing Technology, 180, 32–46. https://doi.org/10.1016/j.fuproc.2018.08.002
Rashidi, H. H., Albahra, S., Robertson, S., Tran, N. K., & Hu, B. (2023). Common statistical concepts in the supervised Machine Learning arena. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1130229
Rzychoń, M., Żogała, A., & Róg, L. (2021). Experimental study and extreme gradient boosting (XGBoost) based prediction of caking ability of coal blends. Journal of Analytical and Applied Pyrolysis, 156, 105020. https://doi.org/10.1016/j.jaap.2021.105020
Salehi, E., Abedi, J., & Harding, T. (2009). Bio-oil from Sawdust: Pyrolysis of Sawdust in a Fixed-Bed System. Energy & Fuels, 23(7), 3767–3772. https://doi.org/10.1021/ef900112b
Samanpour, A. R., Ruegenberg, A., & Ahlers, R. (2018). The Future of Machine Learning and Predictive Analytics. In Digital Marketplaces Unleashed (pp. 297–309). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-49275-8_30
Seo, M. W., Lee, S. H., Nam, H., Lee, D., Tokmurzin, D., Wang, S., & Park, Y.-K. (2022). Recent advances of thermochemical conversion processes for biorefinery. Bioresource Technology, 343, 126109. https://doi.org/10.1016/j.biortech.2021.126109
Shafizadeh, A., Rastegari, H., Shahbeik, H., Mobli, H., Pan, J., Peng, W., Li, G., Tabatabaei, M., & Aghbashlo, M. (2023a). A critical review of the use of nanomaterials in the biomass pyrolysis process. Journal of Cleaner Production, 400, 136705. https://doi.org/10.1016/j.jclepro.2023.136705
Shafizadeh, A., Shahbeig, H., Hossein Nadian, M., Mobli, H., Dowlati, M., Kumar Gupta, V., Peng, W., Shiung Lam, S., Tabatabaei, M., & Aghbashlo, M. (2022). Machine learning predicts and optimizes hydrothermal liquefaction of biomass. Chemical Engineering Journal, 136579. https://doi.org/10.1016/j.cej.2022.136579
Shafizadeh, A., Shahbeik, H., Nadian, M. H., Gupta, V. K., Nizami, A.-S., Lam, S. S., Peng, W., Pan, J., Tabatabaei, M., & Aghbashlo, M. (2023b). Turning hazardous volatile matter compounds into fuel by catalytic steam reforming: An evolutionary machine learning approach. Journal of Cleaner Production, 413, 137329. https://doi.org/10.1016/j.jclepro.2023.137329
Shafizadeh, A., Shahbeik, H., Rafiee, S., Moradi, A., Shahbaz, M., Madadi, M., Li, C., Peng, W., Tabatabaei, M., & Aghbashlo, M. (2023c). Machine learning-based characterization of hydrochar from biomass: Implications for sustainable energy and material production. Fuel, 347, 128467. https://doi.org/10.1016/j.fuel.2023.128467
Shahbeik, H., Rafiee, S., Shafizadeh, A., Jeddi, D., Jafary, T., Lam, S. S., Pan, J., Tabatabaei, M., & Aghbashlo, M. (2022). Characterizing sludge pyrolysis by machine learning: Towards sustainable bioenergy production from wastes. Renewable Energy, 199, 1078–1092. https://doi.org/10.1016/j.renene.2022.09.022
Shahbeik, H., Shafizadeh, A., Gupta, V. K., Lam, S. S., Rastegari, H., Peng, W., Pan, J., Tabatabaei, M., & Aghbashlo, M. (2023). Using nanocatalysts to upgrade pyrolysis bio-oil: A critical review. Journal of Cleaner Production, 413, 137473. https://doi.org/10.1016/j.jclepro.2023.137473
Shen, J., Yan, M., Fang, M., & Gao, X. (2022). Machine learning-based modeling approaches for estimating pyrolysis products of varied biomass and operating conditions. Bioresource Technology Reports, 20, 101285. https://doi.org/10.1016/j.biteb.2022.101285
Somvanshi, M., Chavan, P., Tambade, S., & Shinde, S. V. (2016). A review of machine learning techniques using decision tree and support vector machine. 2016 International Conference on Computing Communication Control and Automation (ICCUBEA), 1–7. https://doi.org/10.1109/ICCUBEA.2016.7860040
Su, S., & Wang, J. (2023). Machine learning prediction of contents of oxygenated components in bio-oil using extreme gradient boosting method under different pyrolysis conditions. Bioresource Technology, 379, 129040. https://doi.org/10.1016/j.biortech.2023.129040
Surendra, K. C., Angelidaki, I., & Khanal, S. K. (2022). Bioconversion of waste-to-resources (BWR-2021): Valorization of industrial and agro-wastes to fuel, feed, fertilizer, and biobased products. Bioresource Technology, 347, 126739. https://doi.org/10.1016/j.biortech.2022.126739
Suriapparao, D. V., & Vinu, R. (2018). Effects of Biomass Particle Size on Slow Pyrolysis Kinetics and Fast Pyrolysis Product Distribution. Waste and Biomass Valorization, 9(3), 465–477. https://doi.org/10.1007/s12649-016-9815-7
Tang, Q., Chen, Y., Yang, H., Liu, M., Xiao, H., Wu, Z., Chen, H., & Naqvi, S. R. (2020). Prediction of Bio-oil Yield and Hydrogen Contents Based on Machine Learning Method: Effect of Biomass Compositions and Pyrolysis Conditions. Energy & Fuels, 34(9), 11050–11060. https://doi.org/10.1021/acs.energyfuels.0c01893
Taşar, Ş. (2022). Estimation of pyrolysis liquid product yield and its hydrogen content for biomass resources by combined evaluation of pyrolysis conditions with proximate-ultimate analysis data: A machine learning application. Journal of Analytical and Applied Pyrolysis, 165, 105546. https://doi.org/10.1016/j.jaap.2022.105546
Trinh, T. N., Jensen, P. A., Dam-Johansen, K., Knudsen, N. O., & Sørensen, H. R. (2013). Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties. Energy & Fuels, 27(3), 1419–1427. https://doi.org/10.1021/ef301944r
Varma, A. K., Shankar, R., & Mondal, P. (2018). A Review on Pyrolysis of Biomass and the Impacts of Operating Conditions on Product Yield, Quality, and Upgradation. In Recent Advancements in Biofuels and Bioenergy Utilization (pp. 227–259). Springer Singapore. https://doi.org/10.1007/978-981-13-1307-3_10
Velvizhi, G., Balakumar, K., Shetti, N. P., Ahmad, E., Kishore Pant, K., & Aminabhavi, T. M. (2022). Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy. Bioresource Technology, 343, 126151. https://doi.org/10.1016/j.biortech.2021.126151
Venderbosch, R., & Prins, W. (2010). Fast pyrolysis technology development. Biofuels, Bioproducts and Biorefining, 4(2), 178–208. https://doi.org/10.1002/bbb.205
Wang, L., Zhou, X., Zhu, X., Dong, Z., & Guo, W. (2016). Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal, 4(3), 212–219. https://doi.org/10.1016/j.cj.2016.01.008
Wurzer, C., & Mašek, O. (2021). Feedstock doping using iron rich waste increases the pyrolysis gas yield and adsorption performance of magnetic biochar for emerging contaminants. Bioresource Technology, 321, 124473. https://doi.org/10.1016/j.biortech.2020.124473
Xie, Q., Wang, G., Peng, Z., & Lian, Y. (2018). Machine Learning Methods for Real-Time Blood Pressure Measurement Based on Photoplethysmography. 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), 1–5. https://doi.org/10.1109/ICDSP.2018.8631690
Xing, J., Luo, K., Wang, H., Gao, Z., & Fan, J. (2019). A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches. Energy, 188, 116077. https://doi.org/10.1016/j.energy.2019.116077
Xiong, Z., Guo, J., Chaiwat, W., Deng, W., Hu, X., Han, H., Chen, Y., Xu, K., Su, S., Hu, S., Wang, Y., & Xiang, J. (2020). Assessing the chemical composition of heavy components in bio-oils from the pyrolysis of cellulose, hemicellulose and lignin at slow and fast heating rates. Fuel Processing Technology, 199, 106299. https://doi.org/10.1016/j.fuproc.2019.106299
Yang, K., Wu, K., & Zhang, H. (2022a). Machine learning prediction of the yield and oxygen content of bio-oil via biomass characteristics and pyrolysis conditions. Energy, 254, 124320. https://doi.org/10.1016/j.energy.2022.124320
Yang, Q., Mašek, O., Zhao, L., Nan, H., Yu, S., Yin, J., Li, Z., & Cao, X. (2021). Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation. Applied Energy, 282, 116275. https://doi.org/10.1016/j.apenergy.2020.116275
Yang, Y., Shahbeik, H., Shafizadeh, A., Masoudnia, N., Rafiee, S., Zhang, Y., Pan, J., Tabatabaei, M., & Aghbashlo, M. (2022b). Biomass microwave pyrolysis characterization by machine learning for sustainable rural biorefineries. Renewable Energy, 201, 70–86. https://doi.org/10.1016/j.renene.2022.11.028
Yang, Y., Shahbeik, H., Shafizadeh, A., Rafiee, S., Hafezi, A., Du, X., Pan, J., Tabatabaei, M., & Aghbashlo, M. (2023). Predicting municipal solid waste gasification using machine learning: A step toward sustainable regional planning. Energy, 278, 127881. https://doi.org/https://doi.org/10.1016/j.energy.2023.127881
Ying, X. (2019). An Overview of Overfitting and its Solutions. Journal of Physics: Conference Series, 1168, 022022. https://doi.org/10.1088/1742-6596/1168/2/022022
Zeng, X., Shao, H., Pan, R., Wang, B., Deng, Q., Zhang, C., & Suo, T. (2022). Real-time damage analysis of 2D C/SiC composite based on spectral characters of acoustic emission signals using pattern recognition. Acta Mechanica Sinica, 38(10), 422177. https://doi.org/10.1007/s10409-022-22177-x
Zhang, T., Cao, D., Feng, X., Zhu, J., Lu, X., Mu, L., & Qian, H. (2022). Machine learning prediction of bio-oil characteristics quantitatively relating to biomass compositions and pyrolysis conditions. Fuel, 312, 122812. https://doi.org/10.1016/j.fuel.2021.122812
Zhang, W., Wu, C., Zhong, H., Li, Y., & Wang, L. (2021). Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geoscience Frontiers, 12(1), 469–477. https://doi.org/10.1016/j.gsf.2020.03.007
Zhou, S., Tang, S., Li, G., Xin, S., Huang, F., Liu, X., Mi, T., Huang, K., & Zeng, L. (2023). Catalytic fast pyrolysis of herbal medicine wastes over zeolite catalyst for aromatic hydrocarbons production. Fuel, 333, 126311. https://doi.org/10.1016/j.fuel.2022.126311