توسعه خشک‌کن مایکروویو- جریان هوای گرم با سامانه کنترل چگالی توان برای مدل‌سازی سینتیک خشک شدن برگه موز

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

چکیده

در این پژوهش یک خشک­کن مایکروویو-جریان هوای گرم با سامانه کنترل برخط چگالی توان برای خشک کردن برگه موز توسعه داده شد. این خشک­کن دارای بخش­های اندازه­گیری برخط جرم، تصویربرداری و مدارکنترل توان مایکروویو می­باشد. کنترل توان مایکروویو توسط یک سامانه شامل برد آردینو، رله حالت جامد (SSR) و برنامه کنترلی در محیط MATLAB انجام گرفت. در این پژوهش آزمایش­ها با پنج سطح چگالی توان ثابت 4، 5، 6، 7 و 8 وات بر گرم برای بررسی سینتیک تغییرات محتوای رطوبتی و توان ورودی به مایکروویو انجام گرفت. همچنین یک الگوریتم پردازش تصویر برای محاسبه درصد سوختگی برگه­های موز توسعه داده شد. برای مدل­سازی تغییرات محتوای رطوبتی از 7 مدل ریاضی استفاده شد. نتایج نشان داد که مدل لگاریتمی با بیشترین مقادیر R2 (9831/0-9966/0) و کمترین مقادیر RMSE (01646/0- 02679/0) دارای بهترین دقت مدل­سازی برای داده­ها آزمایشگاهی می­باشد. همچنین روند تغییرات توان با زمان برای ثابت ماندن چگالی توان در حین فرآیند، مانند تغییرات محتوای رطوبتی در همه تیمارها شکل نمایی به خود گرفت. ارزیابی کیفی محصول نهایی نشان داد که تیمارهای با چگالی توان 6، 7 و 8 بترتیب دارای 12، 24 و 29 درصد سوختگی در مقایسه با تیمارهای 4 و 5 وات بر گرم بدون سوختگی بودند.

کلیدواژه‌ها


عنوان مقاله [English]

Developing the Microwave- Hot Air Dryer with Power Density Control System Using Kinetic Modeling of Banana Slice

نویسندگان [English]

  • Masumeh Sabzevari
  • Nasser Behroozi-Khazaei
  • Hossein Darvshi
Biosystems Engineering Department, Agriculture Faculty, University of Kurdistan, Sanandaj, Iran
چکیده [English]

A microwave-hot air dryer with online microwave power density control was developed for banana slice drying in the present study. This dryer consisted of the online mass measurement, imagining unit, and microwave power control circuit systems. The microwave power control system was set with an Arduino board, SSR relay, and control program in MATLAB environment. Experiments with five levels of fixed power density (4, 5, 6, 7, and 8 Wg-1) were done for examining the kinetics of moisture content and microwave power during the drying process. Also, an image processing algorithm was investigated for measuring the burning percentage of banana slices. For modeling of moisture content kinetics, seven mathematical models were nominated. Results showed that the Logarithmic model could predict the drying kinetics of banana slices better than the other models with the highest R2 (0.9966-0.9831) and lowest RMSE (0.01646-0.02679). Also, the trend of microwave power with time for constant remaining the microwave power density during the drying process such as moisture content variation in all experiments was exponential. Quality evaluation of the final product showed that treatments with power densities of 6, 7, and 8 had 12, 24, and 29% burns, respectively, compared to treatments of 4 and 5 without burns.

کلیدواژه‌ها [English]

  • power density
  • microwave power control
  • machine vision
  • quality
Aghilinategh, N., Rafiee, Sh., Hosseinpour, S., Omid, M., Mohtasebi, S.S. (2016). Real-time color change monitoring of apple slices using image processing during intermittent microwave convective drying. Food Science and Technology International, 22 (7), 1–13.
Al-Harahsheh, M., Al-Muhtaseb, A.H. & Magee, T.R.A. (2009). Microwave drying kinetics of tomato pomace: Effect of osmotic dehydration. Chemical Engineering and Processing, 48, 524–531.
AOAC. (1980). Official method of analysis. 13th ed. Association of Official Analytical Chemists, Washington DC.
Askari, G.R., Emam-Djomeh, Z. & Mousavi, S.M. (2009). An investigation of the effects of drying methods and conditions on drying characteristics and quality attributes of agricultural products duringhot air and hot air /microwave-assisted dehydration. Drying Technology, 27, 831–841.
Akpinar, E. K. (2008). Mathematical modelling and experimental investigation on sun and solar drying of white mulberry. Journal of Mechanical Science and Technology, 22, 1544-1553.
Behroozi-Khazaei, N. & Darvishi, H. (2019). Mathematical modeling of drying kinetic of strawberry slice in microwave-hot air dryer. Iranian Journal of Biosystems Engineering, 50(3), 523-533. (In Farsi)
Bai, j.W., Xiao, H.W., Ma, H.L. & Zhou, C.S. (2018). Artificial neural network modeling of drying kinetics and color changes of ginkgo biloba seeds during microwave drying process. Journal of Food Quality, DOI: 10.1155/2018/3278595.
Cheng, W.M., Raghavan, G.S.V., Ngadi, M. and Wang, N. (2006). Microwave power control strategies on the drying process I. Development and evaluation of new microwave drying system. Journal of Food Engineering, 76: 188-194.
Darvishi, H., Rezaie Asl, A., Asghari, A., Azadbakht, M., Najafi, Gh. & Khodaei, J. (2014). Study of the drying kinetics of pepper. Journal of the Saudi Society of Agricultural Sciences, 13, 130–138.
Kone, K.Y., Druon, C., Gnimpieba, E.Z., Delmotte, M., Duquenoy, A. & Laguerre, J.C. (2013). Power density control in microwave assisted air drying to improve quality of food. Journal of Food Engineering, 119, 750-757.
Kumar, Y., Singh, L., Sharanagat, V. & Tarafdar, A. (2020). Artificial neural network (ANNs) and mathematical modelling of hydration of green chickpea. Information Processing in Agriculture, https://doi.org/10.1016/j.inpa.2020.04.001
Li, Z., Raghavan, G.S.V. & Orsat, V. (2010). Temperature and power control in microwave drying. Journal of Food Engineering, 97, 478–483.
Li, Z., Raghavan, G.S.V., Wang, N. & Vigneault, C. (2011). Drying rate control in the middle stage of microwave drying. Journal of Food Engineering, 104, 234-238.
Nikzad, N., Khavarpour, M.,  Movagharnezhad, K. (2018). Comparison of mathematical models and artificial neural network for prediction of moisture ration of orange slices during drying process. Innovative Food Technology, 6(2), 161-174. (In Farsi)
Pereira, N., Marsaioli, A. & Ahrne, L. (2007). Effect of microwave power, air velocity and temperature on the final drying of osmotically dehydrated bananas. Journal of Food Engineering, 81, 79-87.
Seyedabadi, E., Khojastehpour, M. & Abbaspour-Fard, M.H. (2019). Online measuring of quality changes of banana slabs during convective drying. Engineering in Agriculture, Environment and Food, 12(1), 111- 117.
Silva, W.P., Silva, C., Gama, F. & Gomes, J.P. (2014). Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. Journal of the Saudi Society of Agricultural Sciences, 13, 67-74.
Song, F., Li, Z. & Raghavan, G.S.V. (2017). Combined microwave–hot-air drying of burdock slices with feedback temperature control at surface and core. Drying Technology, 35(14), 1781-1790.
Sturm, S., Raut, Sh., Kuliga, B., Münsterer, J., Kammhuber, K., Hensel, O. & Stuart, O.J.C. (2020). In-process investigation of the dynamics in drying behavior and quality development of hops using visual and environmental sensors combined with chemometrics. Computers and Electronics in Agriculture, 175, 105547.
Suprapto, & Riyanto, E. (2020). Grape drying process using machine vision based on multilayer perceptron networks. Indonesian Journal of Science & Technology, 5 (3), 382-394
Sharma, G.P., Verma, R.C. & Pankaj, P. (2005). Mathematical modeling of infrared radiation thin layer drying of onion slices. Journal of Food Engineering, 71, 282-286.
Tunckal, Cü, Doymaz, İ. 2020. Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renewable Energy. doi.org/10.1016/ j.renene.2020.01.040.
Rezaei, S., Behroozi-Khazaei, N. & Darvishi, H. (2019). Microwave power adjusting during potato slice drying process using machine vision. Computers and Electronics in Agriculture,  160, 40-50.
Yu, P., Huang, M., Zhang, M., Zhu, Q. & Qin, J. (2020). Rapid detection of moisture content and shrinkage ratio of dried carrot slices by using a multispectral imaging system.  Infrared Physics & Technology, https://doi.org/10.1016/j.infrared.2020.103361.