Anonymous, (2015). National Iranian Standard No. 69, White Sugar - Properties and Test Methods. (In Farsi).
Esfandyari, A., Alkasir, J., nad Habibian, M. (2012). Evaluating the accuracy of supervised classification algorithms SVM, SAM, NN On the detection of sugarcane varieties on Hyperion spectral images. Proceedings of 20th national symposium of Geomatics, ran National Cartographic Center, Tehran, Iran. (In Farsi).
Esteki, M., Farajmand, B., Kolahderazi, Y., & Simal-Gandara, J. (2017). Chromatographic Fingerprinting with Multivariate Data Analysis for Detection and Quantification of Apricot Kernel in Almond Powder. Food Anal Method, 10, 3312-3320.
Gutierrez‐Osuna, R., Nagle, H.T., Kermani, B. and Schiffman, S.S. (2002). Signal conditioning and preprocessing, Handbook of Machine Olfaction: Electronic Nose Technology, 105-132.
Hai Z., Wang J. (2006). Detection of adulteration in camellia seed oil and sesame oil using an electronic nose. European Journal of Lipid Science and Technology. 108: 116-124.
Hajinejad M., Mohtesabi S., Ghasemi Varnamekhati M., & Aghbashloo M. (2017). Detecting Adulteration in Lotus Honey Using a Machine Olfactory System. Journal of Agricultural Machinery, 7 (2), 439-450. (In Farsi). Https://doi.org/10.22067/jam.v7i2.52910
Hernandes Gomez, A, J. Wang, G. Hu, and A. Garcia Pereira. 2007. Discrimination of storage shelf-life for mandarin by electronic nose technique. LWF-Food Science and Technology 40: 681-689.
James G; Blackburn F. (2004). Sugarcane. 2nd ed. Oxford Blackwell Science
Keramat-Jahromi, M., Mohtasebi, S.S., Mousazadeh, H., Ghasemi-Varnamkhasti, M., Rafiee, Sh., Savand-Roumi, E. (2019) Evaluation of a Machine Olfaction to Classify the Quality of Dried Date Fruit by Electrohydrodynamic, Hot Air, and the Hybrid Drying Techniques. Iranian Biosystems Emgineering journal. 50(1). 241-251. (In Farsi).
10.22059/IJBSE.2018.248873.665023
Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2018). Real-time aroma monitoring of mint (Mentha spicata L.) leaves during the drying process using electronic nose system. measurement., 124, 447-452
Sanaeifar A., Mohtesabi S., Ghasemi Varnamekhati M., & Ahmadi H. (2015). Design, manufacture, and performance evaluation of an olfactory machine based on metal oxide semiconductor (MOS) sensors for monitoring banana ripening. . Journal of Agricultural Machinery, 5 (1), 111-121. (In Farsi). https://doi.org/10.22067/jam.v5i1.27159
Sanaeifar, A., ZakiDizaji, H., Jafari, A., Guardia, M.d. (2017). Early detection of contamination and defect in foodstuffs by electronic nose: A review. TrAC Trends in Analytical Chemistry 97, 257-271.
Scott, S.M., D. James & Z. Ali. (2006). Data analysis for electronic nose systems. Microchimica Acta 156(3): 183-207.
Shabani, P., Izadi, Z., Ghasemi Varnamekhati, M., Tohidi, M. And Rizzi, S., (2018). Olfactory machine system,an effective solution for detection of adulteration in rosewater, The journal of Innovative Food Technologies, 6(1) 75-89. (In Farsi). DOI: http://dx.doi.org/ 10.22104/JIFT. 2018.2940.1712
Shushtari M.B., Ahmadian, S. and Asfiae, Gh.A. (2008). Sugarcane in Iran. Ayiizh Pub., Tehran.
Soares, L., Galvao, A., Formagio, R.& Tizssot ,D. (2005).Discrimination sugarcane varieties Southeastern Brazil with EO-1 Hyperion Data. Remote Sensing of Environment 94 (2005)523–534
Varmuza K & Filzmoser P. (2009). Introduction to multivariate statistical analysis in chemometrics. 1st Edition. CRC Press, Boca Raton. pp 1-336.
Ghasemi-Varnamkhasti, M., S. S. Mohtasebi, M. Siadat, J. Lozano, H. Ahmadi, S. H. Razvi, and A. Dicko. 2011. Aging fingerprint characterization of beer using electronic nose. Sensors and Actuators B: Chemical 159: 51-59.
Yang, H.F., Wang S.L; Yu S.J., Zeng X.A. & Sun D.W. (2014). Characterization and semi quantitative analysis of volatile compounds in six varieties of sugarcane juice. International journal of food engineering 10(4), 821-828.