Akbarian, A., Andooz, A., Kowsari, E., Ramakrishna, S., Asgari, S., & Cheshmeh, Z. A. (2022a). Challenges and opportunities of lignocellulosic biomass gasification in the path of circular bioeconomy. Bioresource Technology, 362(August), 127774. https://doi.org/10.1016/j.biortech.2022.127774
Akbarian, A., Andooz, A., Kowsari, E., Ramakrishna, S., Asgari, S., & Cheshmeh, Z. A. (2022b). Challenges and opportunities of lignocellulosic biomass gasification in the path of circular bioeconomy. Bioresource Technology, 362, 127774. https://doi.org/https://doi.org/10.1016/j.biortech.2022.127774
Alfarra, F., Ozcan, H. K., Cihan, P., Ongen, A., Guvenc, S. Y., & Ciner, M. N. (2024). Artificial intelligence methods for modeling gasification of waste biomass: a review. Environmental Monitoring and Assessment, 196(3), 309. https://doi.org/10.1007/s10661-024-12443-2
Ascher, S., Wang, X., Watson, I., Sloan, W., & You, S. (2022). Interpretable machine learning to model biomass and waste gasification. Bioresource Technology, 364, 128062. https://doi.org/https://doi.org/10.1016/j.biortech.2022.128062
Ascher, S., Watson, I., & You, S. (2022). Machine learning methods for modelling the gasification and pyrolysis of biomass and waste. Renewable and Sustainable Energy Reviews, 155, 111902. https://doi.org/https://doi.org/10.1016/j.rser.2021.111902
Ayodele, B. V., Mustapa, S. I., Kanthasamy, R., Mohammad, N., AlTurki, A., & Babu, T. S. (2022). Performance analysis of support vector machine, Gaussian Process Regression, sequential quadratic programming algorithms in modeling hydrogen-rich syngas production from catalyzed co-gasification of biomass wastes from oil palm. International Journal of Hydrogen Energy, 47(98), 41432–41443. https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.05.066
Aziz, M. M. A., Kassim, K. A., Shokravi, Z., Jakarni, F. M., Liu, H. Y., Zaini, N., Tan, L. S., Islam, A. B. M. S., & Shokravi, H. (2020). Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review. Renewable and Sustainable Energy Reviews, 119, 109621. https://doi.org/https://doi.org/10.1016/j.rser.2019.109621
Bongomin, O., Nzila, C., Mwasiagi, J. I., & Maube, O. (2024). Exploring Insights in Biomass and Waste Gasification via Ensemble Machine Learning Models and Interpretability Techniques. International Journal of Energy Research, 2024(1), 6087208. https://doi.org/https://doi.org/10.1155/2024/6087208
Chu, C., Boré, A., Liu, X. W., Cui, J. C., Wang, P., Liu, X., Chen, G. Y., Liu, B., Ma, W. C., Lou, Z. Y., Tao, Y., & Bary, A. (2022). Modeling the impact of some independent parameters on the syngas characteristics during plasma gasification of municipal solid waste using artificial neural network and stepwise linear regression methods. Renewable and Sustainable Energy Reviews, 157, 112052. https://doi.org/https://doi.org/10.1016/j.rser.2021.112052
Elmaz, F., Yücel, Ö., & Mutlu, A. Y. (2020). Predictive modeling of biomass gasification with machine learning-based regression methods. Energy, 191, 116541. https://doi.org/https://doi.org/10.1016/j.energy.2019.116541
Fiazi, C., Zarei, C., Samimi Akhijahanii, H., & Maleki, M. 2024. Improving biogas production from fruit waste: using chemical, mechanical and thermal pretreatments and co-digestion with cow manure. Agricultural mechanization., 9(1).
Kardani, N., Zhou, A., Nazem, M., & Lin, X. (2021). Modelling of municipal solid waste gasification using an optimised ensemble soft computing model. Fuel, 289, 119903. https://doi.org/https://doi.org/10.1016/j.fuel.2020.119903
Li, J., Pan, L., Suvarna, M., & Wang, X. (2021). Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening. Chemical Engineering Journal, 426, 131285. https://doi.org/https://doi.org/10.1016/j.cej.2021.131285
Liu, S., Yang, Y., Yu, L., Zhu, F., Cao, Y., Liu, X., Yao, A., & Cao, Y. (2022). Predicting gas production by supercritical water gasification of coal using machine learning. Fuel, 329, 125478. https://doi.org/https://doi.org/10.1016/j.fuel.2022.125478
Long, X., Spiegl, N., Berrueco, C., Paterson, N., & Millan, M. (2020). Fluidised bed oxy-fuel gasification of coal: Interactions between volatiles and char at varying pressures and fuel feed rates. Chemical Engineering Science: X, 8, 100068. https://doi.org/https://doi.org/10.1016/j.cesx.2020.100068
Midilli, A., Kucuk, H., Topal, M. E., Akbulut, U., & Dincer, I. (2021). A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. International Journal of Hydrogen Energy, 46(50), 25385–25412. https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.05.088
Mutlu, A. Y., & Yucel, O. (2018). An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification. Energy, 165, 895–901. https://doi.org/https://doi.org/10.1016/j.energy.2018.09.131
Onsree, T., & Tippayawong, N. (2021). Machine learning application to predict yields of solid products from biomass torrefaction. Renewable Energy, 167, 425–432. https://doi.org/https://doi.org/10.1016/j.renene.2020.11.099
Ozbas, E. E., Aksu, D., Ongen, A., Aydin, M. A., & Ozcan, H. K. (2019a). Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms. International Journal of Hydrogen Energy, 44(32), 17260–17268. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.02.108
Ozbas, E. E., Aksu, D., Ongen, A., Aydin, M. A., & Ozcan, H. K. (2019b). Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms. International Journal of Hydrogen Energy, 44(32), 17260–17268. https://doi.org/10.1016/j.ijhydene.2019.02.108
Pandey, D. S., Raza, H., & Bhattacharyya, S. (2023). Development of explainable AI-based predictive models for bubbling fluidised bed gasification process. Fuel, 351, 128971. https://doi.org/10.1016/j.fuel.2023.128971
Rodionova, M. V, Bozieva, A. M., Zharmukhamedov, S. K., Leong, Y. K., Chi-Wei Lan, J., Veziroglu, A., Veziroglu, T. N., Tomo, T., Chang, J.-S., & Allakhverdiev, S. I. (2022). A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production. International Journal of Hydrogen Energy, 47(3), 1481–1498. https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.10.122
Sánchez, J., Curt, M. D., Robert, N., & Fernández, J. (2019). Chapter Two - Biomass Resources (C. Lago, N. Caldés, & Y. B. T.-T. R. of B. in the B. Lechón (eds.); pp. 25–111). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-813056-8.00002-9
Shafizadeh, A., Shahbeik, H., Rafiee, S., Moradi, A., Shahbaz, M., Madadi, M., Li, C., Peng, W., Tabatabaei, M., & Aghbashlo, M. (2023). Machine learning-based characterization of hydrochar from biomass: Implications for sustainable energy and material production. Fuel, 347, 128467. https://doi.org/https://doi.org/10.1016/j.fuel.2023.128467
Umenweke, G. C., Afolabi, I. C., Epelle, E. I., & Okolie, J. A. (2022). Machine learning methods for modeling conventional and hydrothermal gasification of waste biomass: A review. Bioresource Technology Reports, 17, 100976. https://doi.org/https://doi.org/10.1016/j.biteb.2022.100976
Víllora, G., Pulgar, G., Moreno, D. A., & Romero, L. (1998). Eggplant yield response to increasing rates of N-P-K fertilization. Phyton-International Journal of Experimental Botany, 63, 87–91.
Wen, H. T., Lu, J. H., & Phuc, M. X. (2021). Applying artificial intelligence to predict the composition of syngas using rice husks: A comparison of artificial neural networks and gradient boosting regression. Energies, 14(10), 1–18. https://doi.org/10.3390/en14102932
Yang, Y., Shahbeik, H., Shafizadeh, A., Rafiee, S., Hafezi, A., Du, X., Pan, J., Tabatabaei, M., & Aghbashlo, M. (2023). Predicting municipal solid waste gasification using machine learning: A step toward sustainable regional planning. Energy, 278, 127881. https://doi.org/https://doi.org/10.1016/j.energy.2023.127881
Yu, J., Guo, Q., Gong, Y., Ding, L., Wang, J., & Yu, G. (2021). A review of the effects of alkali and alkaline earth metal species on biomass gasification. Fuel Processing Technology, 214(December 2020), 106723. https://doi.org/10.1016/j.fuproc.2021.106723
Zhou, S., Dai, F., Chen, Y., Dang, C., Zhang, C., Liu, D., & Qi, H. (2019). Sustainable hydrothermal self-assembly of hafnium–lignosulfonate nanohybrids for highly efficient reductive upgrading of 5-hydroxymethylfurfural. Green Chem., 21(6), 1421–1431. https://doi.org/10.1039/C8GC03710H