Abbasi, h., Shirzadifar, A., Nassiri, S. M., Taghavi, S. M., Nematolahi, M., Kazemi, F., & Zarei, S. (2022, September). Feasibility study on application of hyperspectral imaging to identify the tomato bacterial spot disease. In 14th National Congress of Mechanical Engineering of Biosystems & Mechanization of Iran, Kermanshah, Iran. (In persian).
Abdulridha, J., Ampatzidis, Y., Roberts, P., & Kakarla, S. C. (2020). Detecting powdery mildew disease in squash at different stages using UAV-based hyperspectral imaging and artificial intelligence.
Biosystems Engineering, 197, 135-148.
https://doi.org/10.1016/j.biosystemseng.2020.07.001.
Abdulridha, J., Ampatzidis, Y., Qureshi, J., & Roberts, P. (2022). Identification and classification of downy mildew severity stages in watermelon utilizing aerial and ground remote sensing and machine learning.
Frontiers in plant science, 13, 791018.
https://doi.org/10.3389/fpls.2022.791018.
Ampatzidis, Y., De Bellis, L., & Luvisi, A. (2017). Pathology: robotic applications and management of plants and plant diseases.
Sustainability, 9(6),1010.
https://doi.org/10.3390/su9061010.
Anderegg, J., Yu, K., Aasen, H., Walter, A., Liebisch, F., & Hund, A. (2020). Spectral vegetation indices to track senescence dynamics in diverse wheat germplasm.
Frontiers in plant science, 10.
https://doi.org/10.3389/fpls.2019.01749.
Ashikhmin, A., Bolshakov, M., Pashkovskiy, P., Vereshchagin, M., Khudyakova, A., Shirshikova, G., Kozhevnikova, A., Kosobryukhov, A., Kreslavski, V., Kuznetsov, V., & Allakhverdiev, S. I. (2023). The adaptive role of carotenoids and anthocyanins in Solanum lycopersicum pigment mutants under high irradiance. cells, 12(21), 2569. https://doi.org/10.3390/cells12212569.
Asefpour Vakilian, K., & Massah, J. (2017). A farmer-assistant robot for nitrogen fertilizing management of greenhouse crops.
Computers and Electronics Agriculture, 139, 153–163.
https://doi.org/10.1016/j.compag.2017.05.012.
Asefpour Vakilian, K. (2022, December). Optimization methods can increase the durability of smart electrochemical biosensors. In 8th Iranian Conference on Signal Processing and Intelligent Systems. Behshahr, Iran.
Asefpour Vakilian, K. (2023, November). A smart electrochemical biosensor for arsenic detection in water. In 13th International Conference on Computer and Knowledge Engineering. Mashhad, Iran.
Azadshahraki, F., Sharifi, K., Jamshidi, B., Karimzadeh, R., & Naderi, H. (2022). Diagnosis of early blight disease in tomato plant based on visible/near-infrared spectroscopy and principal components analysis - artificial neural network prior to visual disease symptoms. journal of agricultural machinery, 12(1), 81-94. https://doi.org/10.22067/jam.2021.67436.1001.
Barreto, A., Paulus, S., Varrelmann, M., & Mahlein A. K. (2020). Hyperspectral imaging of symptoms induced by Rhizoctonia solani in sugar beet: comparison of input data and different machine learning algorithms. Journal of Plant Disease Protection, 127, 441-451. https://doi.org/10.1007/ s41348-020-00344-8.
Cheshkova, A. F. (2022). A review of hyperspectral image analysis techniques for plant disease detection and identification.
Vavilov Journal of Genetics and Breeding, 26(2), 202-213. https://doi.org/
10.18699/VJGB-22-25.
Cruz, A. C., Luvisi, A., De Bellis, L., & Ampatzidis, Y. (2017). Vision‑based plant disease detection system using transfer and deep learning. In Proceedings of ASABE Annual International Meeting. At: Spokane, Washington, USA. https://doi.org/10.13031/aim.201700241.
Gao, L., & Smith, R. T. (2015). Optical hyperspectral imaging in microscopy and spectroscopy–a review of data acquisition.
Journal of biophotonics. 8(6), 441-56. https://doi.org/
10.1002/jbio.201400051.
Cen, Y., Huang, Y., Hu, S., Zhang, L., & Zhang, J. (2022). Early Detection of Bacterial Wilt in Tomato with Portable Hyperspectral Spectrometer. Remote Sensing, 14(12), 2882. https://doi.org/10.3390/rs14122882.
Gonzalez-Rodriguez, V.E., Izquierdo-Bueno,I., Cantoral, J. M., Carbu, M., & Garrido, C. (2024). Artificial intelligence: a promising tool for application in phytopathology. Horticulturae ,10(3), 197. https://doi.org/10.3390/horticulturae10030197.
Hariharan, J., Fuller, J., Ampatzidis, Y., Abdulridha, J., & Lerwill. A. (2019). Finite difference analysis and bivariate correlation of hyperspectral data for detecting laurel wilt disease and nutritional deficiency in avocado.
Remote Sensing, 11(15), 1748.
https://doi.org/10.3390/rs11151748.
Hariharan, J., Ampatzidis, Y., Abdulridha, J., & Batuman, O. (2023). An AI-based spectral data analysis process for recognizing unique plant biomarkers and disease features, Computers and Electronics Agriculture, 204, 107574, https://doi.org/10.1016/j.compag.2022.107574.
Hatamzadeh, S., Akbari Oghaz, N., Rahnama, K., Noori, F. (2023). Combination of a hierarchical and thermal shock process with a specific aqueous buffer: a safe, rapid and reliable DNA extraction method for plant endophytic fungi. Biologia, 79(10), 597–604.
Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications.
Future generation computer systems, 97, 849-872.
https://doi.org/10.1016/j.future.2019.02.028.
Javidan, S. M., Banakar, A., Asefpour Vakilian, K., & Ampatzidis, Y. (2022, December). A feature selection method using slime mould optimization algorithm in order to diagnose plant leaf diseases, in: The 8th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS). https://doi.org/10.1109/ ICSPIS56952.2022.10043928.
Javidan, S M., Banakar, A., Asefpour Vakilian, K., & Ampatzidis, Y. (2023). Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning.
Smart Agricultural Technology, 3, 100081.
https://doi.org/10.1016/j.atech.2022.100081.
Javidan, S. M., Banakar, A., Asefpour Vakilian, K., Ampatzidis, Y., & Rahnama, K. (2024). Early detection and spectral signature identification of tomato fungal diseases (
Alternaria alternata,
Alternaria solani,
Botrytis cinerea, and
Fusarium oxysporum) by RGB and hyperspectral image analysis and machine learning.
Heliyon, 10(19).
https://doi.org/10.1016/j.heliyon.2024.e38017.
Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia tools and applications, 80, 8091-8126. https://doi.org/10.1007/s11042-020-10139-6.
Li, Z., & Asefpour Vakilian, K. (2025). Detecting the type and severity of mineral nutrient deficiency in rice plants based on an intelligent microRNA biosensing platform. Sensors, 25(16), 5189. https://doi.org/10.3390/s25165189.
Luvisi, A., Ampatzidis, Y., & De Bellis, L. (2016). Plant pathology and information technology: opportunity for management of disease outbreak and applications in regulation frameworks. Sustainability, 8(8), 831. https://doi.org/10.3390/su8080831.
McCraine, D., Samiappan, S., Kohler, L., Sullivan, T., & Will, D. J. (2024). Automated hyperspectral feature selection and classification of wildlife using uncrewed aerial vehicles. Remote Sensing, 16(2), 406. https://doi.org/10.3390/rs16020406.
Mahlein A. K., Alisaac E., Masri A. A., Behmann J., Dehne H. W., & Oerke E. C. (2019). Comparison and combination of thermal, fluorescence, and hyperspectral imaging for monitoring Fusarium head blight of wheat on spikelet scale. Sensors, 19, 2281. https://doi.org/10.3390/s19102281.
Moghadam, P., Ward, D., Goan, E., Jayawardena, S., Sikka, P., & Hernandz. E. (2017, November). Plant disease detection using hyperspectral imaging. International conference on digital image computing: Techniques and applications. Australia, Sydney.
Mohammad Zamani, D., Javidan, S. M., Zand, M., & Rasouli, M. (2023). Detection of cucumber fruit on plant image using artificial neural network.
Journal of Agricultural Machinery, 13(1), 27–39.
https://doi.org/10.22067/jam.2022.73827.1077.
Momeni, M., Jahanbakhshi, A., Neshat, A. A., Hadipour-Rokni, R., Zhang, Y. D., & Ampatzidis, Y. (2022). Detection of citrus black spot disease and ripeness level in orange fruit using learning-to-augment incorporated deep networks.
Ecological Informatics, 71, 101829.
https://doi.org/10.1016/j.ecoinf.2022.101829.
Pan, T. T., Chyngyz, E., Sun, D. W., Paliwal, J., & Pu, H. (2019). Pathogenetic process monitoring and early detection of pear black spot disease caused by
Alternaria alternata using hyperspectral imaging.
Postharvest Biology and Technology. 154, 96-104.
https://doi.org/10.1016/j.postharvbio.2019.04.005.
Pannakkong, W., Thiwa‑Anont, K., Singthong, K., Parthanadee, P., & Buddhakulsomsiri, J. (2022). Hyperparameter tuning of machine learning algorithms using response surface methodology: A Case Study of ANN, SVM, and DBN. Mathematical Problems in Engineering, 2022, Article ID 8513719.
Pourreza, A., W.S. Lee, W.S., Ehsani, E.R., &. Etxeberria, E. (2014). Citrus huanglongbing detection using narrow-band imaging and polarized illumination, in: In Transactions of the ASABE. American Society of Agricultural and Biological Engineers (ASABE), 259–272. https://doi.org/10.13031/trans.57.10147.
Prasad, V., & Upadhyay, R. (2010).
Alternaria alternata f.sp. lycopersici and its toxin trigger production of H2O2 and ethylene in tomato.
Journal of plant pathology, 92(1). https://doi.org/
10.4454/jpp.v92i1.19.
Reis Pereira, M., Verrelst, J., Tosin, R., Rivera Caicedo, J .P., Tavares, F., Neves dos Santos, F., & Cunha, M. (2024). Plant disease diagnosis based on hyperspectral sensing: comparative analysis of parametric spectral vegetation indices and nonparametric Gaussian process classification approaches. Agronomy, 14(3), 493. https://doi.org/10.3390/agronomy14030493.
Salamai, A. A., Ajabnoor, N., Khalid, W. E., Ali, M. M., & Murayr,A. A. (2023). Lesion-aware visual transformer network for Paddy diseases detection in precision agriculture.
European journal of agronomy. 148, 126884.
https://doi.org/10.1016/j.eja.2023.126884.
Samadi, S. M., Asefpour Vakilian, K., & Javidan, S. M. (2025). Combining miRNA concentrations and optimized machine-learning techniques: An effort for the tomato storage quality assessment in the agriculture 4.0 framework.
Journal of Agriculture and Food Research, 19, 101605.
https://doi.org/10.1016/j.jafr.2024.101605.
Schratz, P., Muenchow, J., Iturritxa, E., Richter, J., & Brenning, A. (2019). Hyperparameter tuning and performance assessment of statistical and machine‑learning algorithms using spatial data.
Ecological Modelling, 406, 109–120.
https://doi.org/10.1016/j.ecolmodel.2019.06.002.
Trifunovic-Momcilov, M., Milosevic, S., Markovic, M., Đuric, M., Jevremovic, S., Dragicevic, I.C., & Subotic, A. R. (2021). Changes in photosynthetic pigments content in non- transformed and AtCKX transgenic centaury (Centaurium erythraea Rafn) shoots grown under salt stress in vitro. Agronomy, 11(10), 2056. https://doi. org/10.3390/agronomy11102056.
Wang, W., Li, C., Tollner, E. W., Gitaitis, R. D., & Rains, G. C. (2012). Shortwave infrared hyperspectral imaging for detecting sour skin (
Burkholderia cepacia)-infected onions.
Journal of Food Engineering.109(1), 38-48.
https://doi.org/10.1016/j.jfoodeng.2011.10.001.
Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft computing, 22(2), 387-408. https://doi.org/10.1007/s00500-016-2474-6.
Wang, D., R. Vinson, R., Holmes, M., Seibel, G., Bechar, A., Nof, S., & Tao, Y. (2019). Early detection of tomato spotted wilt virus by hyperspectral imaging and outlier removal auxiliary classifier generative adversarial nets (OR-AC-GAN),
Scientific Reports, 9(1).
https://doi.org/10.1038/s41598-019-40066-y.
Wang, Y. M., Ostendorf, B., Gautam, D., Habili, N., & Pagay, V. (2022). Plant viral disease detection: from molecular diagnosis to optical sensing technology a multidisciplinary review. Remote Sensing, 14(7), 1542. https://doi.org/10.3390/rs14071542.
Xie, C., Shao, Y., Li, X., & He, Y. (2015). Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging.
Scientific Reports, 5, 16564.
https://doi.org/10.1038/srep16564.
Xuan, G., Gao, Ch., & Shao, Y. (2022). Spectral and image analysis of hyperspectral data for internal and external quality assessment of peach fruit, Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy, 272, 121016.
https://doi.org/10.1016/j.saa.2022.121016.
Yuan, P., Yan, W., Han, Y., Huang, B., Wang, J., Zhang, H., & Zhang., Z. (2019). Detection of anthracnose in tea plants based on hyperspectral imaging. Computers and Electronics Agriculture, 167, 105039, https://doi.org/10.1016/j.compag.2019.105039.
Zahra, A., Qureshi, R., Sajjad, M., Sadak, F., Nawaz, M., Khan, H A., & Uzair, M. (2024). Current advances in imaging spectroscopy and its state-of-the-art applications. Expert Systems with Applications. 238, 122172,
https://doi.org/10.1016/j.eswa.2023.122172.
Zhang, X., Wang, Y., Zhou, Z., Zhang, Y., & Wang, X. (2023). Detection method for tomato leaf mildew based on hyperspectral fusion terahertz technology.
Foods, 12(3), 535,
https://doi.org/10.3390/foods12030535.