Investigation of mechanical and physical properties of soy protein isolate - tragacanth-nanocellulose based nanocomposite film

Document Type : Research Paper


1 M.Sc. Department of Food Science and Technology, Faculty of Agriculture, Islamic Azad University, Shahrekord Branch

2 Associate Professor, Department of Food Science and Technology, Faculty of Agriculture, Islamic Azad University, Shahrekord Branch

3 Assistant Professor


In the past decades, environmental pollution caused by plastic packing materials, restrictions of petroleum resources and their high price attracted many researchers to produce biodegradable packaging materials. Poor mechanic properties and high water vapor permeability are two main defects of biodegradable polymers. Nanotechnology is a modification method in this case. In the current study, the effects of nanocellulose (NC) as a nano filler on the functional properties (i.e. solubility in water (SW), moisture content (MC), water vapor permeability (WVP), tensile strength (TS), elongation to break (EB), color and structural properties) of soy protein isolate-tragacanth gum (SPI-TG) were investigated. The results showed, the functional properties of SPI-TG-NC were improved. The highest yellowness index and total color difference was observed in SPI:TG (4.7:0.3), The lowest yellowness index and total color difference was observed in SPI-TG-NC (3%). The microstructure of film specimens was investigated using scanning electron microscope.


Main Subjects

Albert, Y., Leung, A. & Steven, F. (1996). Encyclopedia of Common Natural Ingridients Used in Food Drugs and Cosmetic. Food Chemistry,59(2), 321.
ASTM. (1995). Standard test methods for water vapor transmission of material, E 96-95. Annual book of ASTM, American Society for Testing and Material.
ASTM. (2010). Standard Test Methods for Tensile Properties of Thin Plastic Sheeting, D882-10. Annual book of ASTM, American National Standards Instiute (ANSI).
Bertuzzi, M.A., Vidaurre, E.F.C., Armada, M. & Gottifredi, J.C. (2007).Water vapor permeability of edible starch based films.  Journal of Food Engineering, 80, 972-978.
Cao, N., Fu, Y. & He, J. ( 2007). Preparation and physical properties of soy protein isolate and gelatin composite films.  Food Hydrocolloids, 21, 1153-1162.
Cao, X., Chen, Y., Chang, P. R., Stumborg, M. and Huneault, M. A. (2008). Green Composites Reinforced with Hemp Nanocrystals in Plasticized Starch. Journal of Applied Polymer Science, 109, 3804-3810.
Chang, P. R., Ruijuan, J., Zheng, P., Yu, J. and Ma, X. (2010). Preparation and properties of glycerol plasticized starch (GPS) cellulose nanoparticle (CN) composites. Carbohydr Polym,79, 301-5.
Cho, Y. S. & Rhee, C. (2002). Sorption characteristics of soy protein films and their relation to mechanical properties. LWT- Food Science and Trchnology, 35, 151-157.
Cho, Y. S., Park, J. W., Batt, H. T. & Thomas, R. L. (2007). Edible films made from processed soy protein concentrates. LWT- Food Science and Technology, 40, 418-423.
Cyras, V. P., Manfredi, L. B., Ton-That, M. & Vazquez, A. (2008). Physical and mechanical properties of thermoplastic starch /montmorillonite nanocomposite films. Journal of Carbohydrate Polymers, 73(1), 55-63.
Echeverria, I., Eisenberg, P. and Mauri, A. N. (2014). Nanocomposites films based on soy proteins and montmorillonite processed by casting. Journal of Membrane Science, 449, 15-26.
Fazel, M., Azizi, M., H., Abbasi, S. & Barzegar, M. (2012). Effect of tragacanth, glycerol and sunflower oil on potato starch-based edible films. Journal ofIranianFood Science and Technology, 34(9), 97-106. (In Farsi).
Filpponen, I. (2009). The synthetic strategies for unique properties in cellulose nanocrystal materials. PhD thesis, graduate faculty of north Carolina state university, Raleigh, North Carolina, USA, July.
Ghanbarzadeh, B., Oromiehie, A. R., Musavi, M., Emam D-Jomeh, Z., Razmi Rad, E. & Milani, J. (2006). Effect of plasticizing sugars on rheological and thermal properties of zein resins and mechanical properties of zein films.  Journal of Food Research International, 39, 882-890.
Ghanbarzadeh,  B . & Almasi, H.  (2009). Investigating of physical properties of carboxymethyl cellulose –oleic acid composite biodegradable edible films. Journal ofIranianFood Science and Technology, 2(6), 35-42. (In Farsi).
Ghanbarzadeh, B., Almasi, H. & Zahedi, Y. (2009) Biodegradable edible biopolymers in food and drug packaging. Amirkabir university of technology. Tehran: Polytechnic press. (In Farsi).
Gindl, W. & Keckes, J. (2005). All-Cellulose Nanocomposite. Polymer, 46, 10221-10225.
Gontard, N., Duchez, C., Cuq, B. & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. Food Science and Technology, 29, 39-50.
Hassannia-Kolaee, M.,  Khodaiyan, F. & Shahabi-Ghahfarrokhi, I. (2015). Modification of functional properties of pullulan–whey protein bionanocomposite films with nanoclay. Journal of Food Science and Technology, InPress.
Hatami, A., Barikani, M. & Mohaghegh, M. (2011). Nanocellulose, investigating structure, properties and applications. Journal of Nanotechnology, 9(10),25-29. (In Farsi).         
Khodayari, M. ( 2010).  Edible packaging for food  material. Journal of Nanotechnology, 10(9), 159.(In Farsi).
Klump, S.P., Allred, M.C., Macdonald, J.L. & Ballam, J.M. (2001). Determination of isoflavones in soy and selected foods containing soy by extraction, saponification, and liquid chromatography. Journal of AOAC International, 84(6), 1865-1883.
Koshy, R. R., Mary, S. K., Thomas, S., & Pothan, L. A. (2015). Environment friendly green composites based on soy protein isolate e A review. Food Hydrocolloids, 50, 174-192.
Kumar, P., Sandeep, K. P., Alavi, S., Truong, V. D. & Gorga, R. E. (2010).Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. Journal of Food Engineering, 100(3),  480-489.
Lapasin, R. & Pricl, S. (1995). Rheology of industrial polysaccharides: theory and applications.Blackie Academic & Professional, London.
Londhe, S. V., Joshi, M. S., Bhosale, A. A. & Kale, S. B. (2011). Isolation of quality soy protein from soya flakes. International Journal of Research in Pharmaceutical and Biomedical Sciences, 2, 1175- 1177.
Moayedi,S., Sadeghi- Mahoonak, A. R., Azizi, M. H. & Maghsoudlou, Y. ( 2013). Effect of different levels of gum tragacanth on bread quality.Journal ofIranian Food Science and Technology, 38(10), 104.(In Farsi).
Morton, J. F. (1977). Major Medicinal Plants. ILLINOIS: Springfield,: Charles C. Thomas, 356-375.
Noshirvan, N., Ghanbarzadeh, B. & Entezami, A. A. (2011). Morphology, contact angle and color properties of starch-poly vinyl alcohol –cellulose nanocrystal bionanocomposite films. Journal of Iranian Food Science and Technology, 21(2), 141-154. (In Farsi).
Paralikar, S. A., Simonsen, J. and Lombardi, J. (2008). Poly vinyl alcohol / cellulose nanocrystal barrier membranes. Journal of   Membrane Sci, 320, 248-58.
Rimdusit, S., Jingjid, S., Damrongsakkul, S., Tiptipakorn, S. & Takeichi, T. (2008). Biodegradability and property characterizations of Methyl Cellulose: Effect of nanocompositing and chemical crosslinking. Journal of Carbohydrate Polymers,72,  444-455.
Russo, M. A. L., Sullivan, C., Rounsefell, B., Halley, P. J., Truss, R. & Clarke, W. P. (2009). The anaerobic degradability of thermoplastic starch: Polyvinyl alcohol blends: Potential biodegradable food packaging materials. Bioresource Technology, 100, 1705-1710.
Sanchez-Garcia, M. D., Gimenez, E. and Lagaron, J. M. (2008). Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym, 71, 235-44.
Saxena, A., Elder, T. J., Pan, S. and Ragauskas, A. J. (2009). Novel nanocellulosic xylan composite film. Composites:Part B, 40, 727-730.
Separdar, H., Rahimi, E., Shahabi-Ghahafarrokhi, I. & Aghabarari, B. (2015). Production and investigating of  physical and  mechanical characterization based soy protein isolate- tragacanth. Iranian Food Science and Technology Research, In Press. (In Farsi).
Shahabi-Ghahafarrokhi, I., Khodaiyan, F., Mousavi, M. & Yousefi, H. (2015a). Green bionanocomposite based on kefiran and cellulose nanocrystals produced from beer industrial residues. International  Journal of   Biological  Macromolecules, 77, 85–91.
Shahabi-Ghahafarrokhi, I., Khodaiyan, F., Mousavi, M. & Yousefi, H. (2015b). Effect of  gama-irradiation on the physical and mechanical properties of kefiran biopolymer film. International  Journal   of   Biological  Macromolecules, 74, 343–350.
Shahabi-Ghahafarrokhi, I., Khodaiyan, F., Mousavi, M. & Yousefi, H. (2015c). Preparation and Characterization of Nanocellulose from Beer Industrial Residues Using Acid Hydrolysis/Ultrasound. Journal   of   Fibers and Polymers, 16(3), 529-536.
Shahabi-Ghahafarrokhi, I., Khodaiyan, F., Mousavi, M. & Yousefi, H. (2015d). Preparation of UV-protective kefiran/nano-ZnO nanocomposites: Physical and mechanical properties.  International  Journal   of   Biological  Macromolecules, 72, 41–46.
Siracusa, V., Rocculi, P., RomanI, S. & Dalla Rosa, M. ( 2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology,19, 634-643.
Svagan, A. J., Hedenqvist, M. S. and Berglund, L. (2009). Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Journal of Composites science and Thechnology, 69, 500-506.
Tharanthan, R.N. (2003). Biodegradable films and composite coatings: past - present and future. Food Science & Technology, 14, 71-78.
Wang, S., Cheng. Q., Rials, T.G. and Lee.S.H.(2007). Cellulose microfibril/nanofibril and its nanocomposites.Carbohydrate Polymers, 201,301-308.