Corn Drying in a Laboratory Scale Ultrasound-Assisted Fluidized Bed Dryer

Document Type : Research Paper


1 Graduate, Biosystems Engineering Department, College of Agriculture, Shiraz University, Shiraz

2 Associate Professor, Biosystems Engineering Department, College of Agriculture, Shiraz University, Shiraz

3 Ph.D. Candidate, Biosystems Engineering Department, College of Agriculture, Shiraz University, Shiraz


Several studies have been conducted on equipping conventional fluidized bed with some technologies to increase drying efficiency and its performance. The objective of the study was to investigate the influence of high power ultrasound on fluidized bed drying of corn in terms of drying kinetics and quality characteristics of corn in three levels of ultrasound power density (11.1, 14.6 and 18.7 kW m-3), three levels of drying air temperature (30, 40, and 50 ºC) and four levels of frequency (20, 25, 28, and 30 kHz) in which the moisture content reduced from 32±0.5 (%d.b.) to 17±0.5 (%d.b.). Results revealed that the frequency of 25 kHz was the most efficient in terms of drying time. The frequency of 25 kHz and power density 14.6 kw m-3 was the most efficient frequency and caused reduction of the drying time by 43% in comparison with no ultrasound condition (control). The sponge effect caused by ultrasound application led to reduction of failure strength and toughness of the dried samples. According to the results, toughness compared to the failure strength was an appropriate index of the grain hardness.


Main Subjects

Abdoli,[f1]  B. (2016). Evaluation of corn drying process in an Ultrasound-Assisted Fluidized Bed Dryer. Published MS Thesis, Shiraz University, Shiraz. (In Farsi).
ASABE, (2008a). S368.4: Compression test of food materials of convex shape. ASABE Standards. St. Joseph, MI.
ASABE, (2008b). S352.2: Moisture measurement- Unground grain and seeds. ASABE Standards St. Joseph, MI.
Barzegar, M., Zare, D. & Stroshine, R. L. (2015). An integrated energy and quality approach to optimization of green peas drying in a hot air infrared-assisted vibratory bed dryer. Journal of Food Engineering, 166, 302-315.
Brooker, D. B., Bakker-Arkema, F. W. & Hall, C. W. (1992). Drying and storage of grains and oilseeds. Springer Science & Business Media.
Cárcel, J. A., Benedito, J., Rosselló, C. & Mulet, A. (2007a). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78(2), 472-479.
Cárcel, J. A., García-Pérez, J. V., Riera, E. & Mulet, A. (2007b). Influence of high-intensity ultrasound on drying kinetics of persimmon. Drying Technology, 25(1), 185-193.
Chen, Z. G., Guo, X. Y., & Wu, T. (2016). A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods. Ultrasonics sonochemistry, 30, 28-34.
De la Fuente-Blanco, S., De Sarabia, E. R. F., Acosta-Aparicio, V. M., Blanco-Blanco, A. & Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, e523-e527.
Dolatowski, Z. J., Stadnik, J. & Stasiak, D. (2007). Application of ultrasound in food technology. Acta Scientiarum Polonorum Technologia Alimentaria, 6(3), 88-99.
FAO, Food and Agriculture Organization of the United Nations Statistics Division,, 2014 (accessed  5/8/2014).
Fernandes, F. A., Gallão, M. I. & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90(2), 186-190.
Fernandes, F. A., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. Journal of Food Engineering82(2), 261-267.
Fernandes, F. A., Gallão, M. I., & Rodrigues, S. (2008). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT-Food Science and Technology41(4), 604-610.
Fernandes, F. A., & Rodrigues, S. (2008). Dehydration of sapota (Achras sapota L.) using ultrasound as pretreatment. Drying Technology26(10), 1232-1237.
Fernandes, F. A., Gallão, M. I., & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering90(2), 186-190.
Gallant, D., Degrois, M., Sterling, C. & Guilbot, A. (1972). Microscopic effects of ultrasound on the structure of potato starch preliminary study. Starch, 24(4), 116-123.
Gallego-Juárez, J. A., Riera, E., De la Fuente Blanco, S., Rodríguez-Corral, G., Acosta-Aparicio, V. M. & Blanco, A. (2007). Application of high-power ultrasound for dehydration of vegetables: processes and devices. Drying Technology, 25(11), 1893-1901.
Garcia-Noguera, J., Oliveira, F. I., Gallão, M. I., Weller, C. L., Rodrigues, S. & Fernandes, F. A. (2010). Ultrasound-assisted osmotic dehydration of strawberries: Effect of pretreatment time and ultrasonic frequency. Drying Technology, 28(2), 294-303.
García-Pérez, J. V., Cárcel, J. A., De la Fuente-Blanco, S. & De Sarabia, E. R. F. (2006). Ultrasonic drying of foodstuff in a fluidized bed: Parametric study. Ultrasonics, 44, e539-e543.
García-Pérez, J. V., Cárcel, J. A., Riera, E.  & Mulet, A. (2009). Influence of the applied acoustic energy on the drying of carrots and lemon peel. Drying Technology, 27(2), 281-287.
Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007). Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering81(1), 88-97.
Jayaraman, K. S., & Das Gupta, D. K. (1992). Dehydration of fruits and vegetables-recent developments in principles and techniques. Drying Technology10(1), 1-50.
Jones, D. F. (1924). The origin of flint and dent corn. Journal of Heredity15(10), 417-419.
Szadzińska, J., Łechtańska, J., Kowalski, S. J., & Stasiak, M. (2017). The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry34, 531-539.
Karki, B. (2009). Use of high-power ultrasound during soy protein production and study of its effect on functional properties of soy protein isolate.  PhD. dissertation, Iowa State University, Ames.
Lewicki, P. P., & Pawlak, G. (2003). Effect of drying on microstructure of plant tissue. Drying Technology, 21(4), 657-683.
Mohsenin, N. N. (1970). Physical properties of plant and animial materials. Vol. 1. Structure, physical characterisitics and mechanical properties. Physical properties of plant and animial materials. Vol. 1. Structure, physical characterisitics and mechanical properties.1.
Momenzadeh, L., Zomorodian, A. & Mowla, D. (2011). Experimental and theoretical investigation of shelled corn drying in a microwave-assisted fluidized bed dryer using Artificial Neural Network. Food and bioproducts processing, 89(1), 15-21.
Mujumdar, A. S., & Menon, A. S. (1995). Drying of solids: principles, classification, and selection of dryers. Handbook of industrial drying1, 1-39.Nowacka, M., Wiktor, A., Śledź, M., Jurek, N. & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113(3), 427-433.
Ranjbaran, M., Emadi, B., & Zare, D. (2014). CFD simulation of deep-bed paddy drying process and performance. Drying Technology32(8), 919-934.Rodríguez, J., Mulet, A. & Bon, J. (2014). Influence of high-intensity ultrasound on drying kinetics in fixed beds of high porosity. Journal of Food Engineering, 127, 93-102.
Schössler, K., Jäger, H.  & Knorr, D. (2012). Novel contact ultrasound system for the accelerated freeze-drying of vegetables. Innovative Food Science & Emerging Technologies, 16, 113-120.
Tarleton, E. S. (1992). The role of field-assisted techniques in solid/liquid separation. Filtration & separation, 29(3), 246-238.
Tarleton, E. S., Wakeman, R. J., Povey, M. J. W. & Mason, T. J. (1998). Ultrasounds in Food Processing. (pp. 193-218). Blackie Academic and Professional, Glasgow.
Witrowa-Rajchert, D. & Rzaca, M. (2009). Effect of Drying Method on the
Microstructure and Physical Properties of Dried Apples. Drying Technology,
27, 903–909.
Wolf, M. J., Buzan, C. L., MacMASTERS, M. M., & Rist, C. E. (1952). Structure of the mature corn kernel. 1. Gross anatomy and structural relationships. Cereal Chemistry29(5), 321-333.
Jafari, A., & Zare, D. (2016). Ultrasound-assisted Fluidized Bed Drying of Paddy: Energy Consumption and Rice Quality Aspects. Drying Technology,
Zare, D. & Jafari, A. M. (2015). Paddy drying in an ultrasound-assisted fluidized bed dryer. 36th CIOSTA and CIGR (International Commission of Agricultural and Biosystems Engineering). May 26-28, Saint-Petersburg, Russia.
Zare, D., Minaei, S., Zadeh, M. M. & Khoshtaghaza, M. H. (2006). Computer simulation of rough rice drying in a batch dryer. Energy Conversion and Management, 47(18), 3241-3254.
Zare, D., Jayas, D. S., & Singh, C. B. (2012). A generalized dimensionless model for deep bed drying of paddy. Drying Technology30(1), 44-51.
 [f1]کامنت داور محترم دوم : چه دانشکده ای؟ چه گروهی؟
پاسخ به داور محترم : مطابق با فرمت رفرنس نویسی مجله است.