Assessment of the energy flow and environmental impacts of greenhouse production of medicinal plants with life cycle assessment approach- Case study of Aloe vera

Document Type : Research Paper

Authors

1 Assistant Professor, Department of Agricultural Engineering, Faculty of Engineering and Technology, College of Agriculture and Natural Resources, Tehran University

2 Department of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, Tehran University

Abstract

In this study the production of greenhouse Aloe vera leaves in Khorasan Razavi province was evaluated and analyzed in terms of energy consumption pattern and environmental consequences due to the use of agricultural inputs. According to the results, total energy consumption in production of Aloe vera leaves was evaluated as 102825.19 MJ ton-1. The results of energy analysis showed that the heat supply and greenhouse structures were consumed more than 90 percent of total energy consumption. Based on the results of life cycle assessment, the total amount of environmental impacts for greenhouse production of one ton of Aloe vera leaves was determined as 2331.26 pPt ton-1, in which the contributions of the input production outside the greenhouse and the input consumption inside the greenhouse were 1744.63 and 586.63 pPt ton-1, respectively. The results showed that the impact categories of human toxicity and marine aquatic ecotoxicity with environmental impacts of 621.043 and 608.538 pPt ton-1, respectively, had the highest share in total environmental impact.

Keywords


Ahlawat K.S., & Khatkar, B. S. (2011). Processing, food applications and safety of aloe vera products: a review. Journal of Food Science and Technology, 48(5),525–533.
Anon. (2016). Annual Agricultural Statistics. Ministry of Jihad-e-Agriculture of Iran. http://www.maj.ir, (in Farsi).
Brentrup, F., Küsters, J., Lammel, J., Barraclough, P., & Kuhlmann, H. (2004). Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy, 20(3), 265-279.
Canakci, M., & Akinci, I. (2006). Energy use pattern analyses of greenhouse vegetable production. Energy, 31(8), 1243-1256.
Carlsson-Kanyama, A. (1998). Climate change and dietary choices—how can emissions of greenhouse gases from food consumption be reduced?. Food policy, 23(3), 277-293.
Cellura, M., Longo, S., & Mistretta, M. (2012). Life Cycle Assessment (LCA) of protected crops: an Italian case study. Journal of Cleaner Production, 28, 56-62.
Chaudhary, V. P., Gangwar, B., & Pandey, D. K. (2006). Auditing of energy use and output of different cropping systems in India. Agricultural Engineering International: the CIGR Ejournal, 8, 1-13.
Chauhan, N. S., Mohapatra, P. K., & Pandey, K. P. (2006). Improving energy productivity in paddy production through benchmarking—An application of data envelopment analysis. Energy Conversion and Management, 47(9), 1063-1085.
Cheesbrough, M. (2006). District laboratory practice in tropical countries. United Kingdom: Cambridge university press.
Coltro, L., Mourad, A., Oliveira, P., Baddini, J., & Kletecke, R. (2006). Environmental Profile of Brazilian Green Coffee (6 pp). The International Journal of Life Cycle Assessment11(1), 16-21.
Cragg, G. M., & Newman, D. J. (2001). Natural product drug discovery in the next millennium. Pharmaceutical Biology, 39(1), 8-17.
Curran, M. A., Mann, M., & Norris, G. (2005). The international workshop on electricity data for life cycle inventories. Journal of Cleaner Production, 13(8), 853-862.
De Backer, E., Aertsens, J., Vergucht, S., & Steurbaut, W. (2009). Assessing the ecological soundness of organic and conventional agriculture by means of life cycle assessment (LCA) A case study of leek production. British Food Journal111(10), 1028-1061.
Guinée, J. B. (2002). Handbook on life cycle assessment operational guide to the ISO standards. The International Journal of Life Cycle Assessment, 7(5), 311-313.
Heidari, M. D., Omid, M., & Mohammadi, A. (2012). Measuring productive efficiency of horticultural greenhouses in Iran: a data envelopment analysis approach. Expert Systems with Applications39(1), 1040-1045.
IPCC, 2006. Guidelines for national greenhouse gas inventories. In: Eggleston, H.S.,
Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.), Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan. http://www.ipccnggip.iges.or.jp/public/2006gl/index.htm.
ISO. (2006) 14040: 2006. Environmental management-Life cycle assessment-Principles and framework. European Committee for Standardization, Geneva, Switzerland.
Khoshnevisan, B., Rafiee, S., & Mousazadeh, H. (2013b). Environmental impact assessment of open field and greenhouse strawberry production. European journal of Agronomy50, 29-37.
Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2013a). Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach. Energy, 55, 676-682.
Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H., & Clark, S. (2014a). Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. Journal of Cleaner Production, 73, 183-192.
Khoshnevisan, B., Shariati, H. M., Rafiee, S., & Mousazadeh, H. (2014b). Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production. Renewable and Sustainable Energy Reviews, 29, 316-324.
Kim, C. G. (2001). Developing Policies for Agriculture and the Environment. Food and Fertilizer Technology Center. Korea Rural Economic Institute: Working Paper.
Kitani, O. (1999). CIGR handbook of agricultural, volume 5: Energy and biomass engineering. ASAE publications, St Joseph, MI.
Kittle, A. P. (1993). Alternate daily cover materials and subtitle, the selection technique Rusmar. USA: Incorporated West Chester, PA.
Kouchaki-Penchah, H., Sharifi, M., Mousazadeh, H., Zarea-Hosseinabadi, H., & Nabavi-Pelesaraei, A. (2016). Gate to gate life cycle assessment of flat pressed particleboard production in Islamic Republic of Iran. Journal of Cleaner Production, 112, 343-350.
Martin-Gorriz, B., Soto-García, M., & Martínez-Alvarez, V. (2014). Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios. Energy, 77, 478-488.
Mills, E. (2012). The carbon footprint of indoor Cannabis production. Energy Policy46, 58-67.
Mousavi-Avval, S. H., Rafiee, S., Jafari, A., & Mohammadi, A. (2011). Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy, 36(5), 2765-2772.
Mousavi-Avval, S. H., Rafiee, S., Sharifi, M., Hosseinpour, S., Notarnicola, B., Tassielli, G., & Khanali, M. (2017a). Use of LCA indicators to assess Iranian rapeseed production systems with different residue management practices. Ecological Indicators80, 31-39.
Mousavi-Avval, S. H., Rafiee, S., Sharifi, M., Hosseinpour, S., Notarnicola, B., Tassielli, G., & Renzulli, P. A. (2017b). Application of multi-objective genetic algorithms for optimization of energy, economics and environmental life cycle assessment in oilseed production. Journal of Cleaner Production, 140, 804-815.
Muñoz, P., Antón, A., Nuñez, M., Paranjpe, A., Ariño, J., Castells, X., & Rieradevall, J. (2007). Comparing the environmental impacts of greenhouse versus open-field tomato production in the Mediterranean region: In International Symposium on High Technology for Greenhouse System Management, 4 Oct., Greensys, pp. 1591-1596.
Nemecek, T., Dubois, D., Huguenin-Elie, O., & Gaillard, G. (2011). Life cycle assessment of Swiss farming systems: I. Integrated and organic farming. Agricultural Systems, 104(3), 217-232.
Nemecek, T., Heil, A., Huguenin, O., Meier, S., Erzinger, S., Blaser, S., & Zimmermann, A. (2007). Life cycle inventories of agricultural production systems. From: http://www.ecoinvent.org/documentation/reports/.
Nguyen, T. L. T., & Hermansen, J. E. (2012). System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Applied energy89(1), 254-261.
Ozkan, B., Akcaoz, H., & Fert, C. (2004). Energy input–output analysis in Turkish agriculture. Renewable Energy, 29(1), 39-51.
Ozkan, B., Fert, C., & Karadeniz, C. F. (2007). Energy and cost analysis for greenhouse and open-field grape production. Energy, 32(8), 1500-1504.
Perry, R. H., Green, D. W., & Maloney, J. (1997). Perry’s chemical engineers’ handbook. McGrw-Hill. New York, United States.
Pfister, S., Bayer, P., Koehler, A., & Hellweg, S. (2011). Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environmental science & technology45(13), 5761-5768.
Rathke, G. W., Behrens, T., & Diepenbrock, W. (2006). Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agriculture, Ecosystems & Environment, 117(2), 80-108.
Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., & Pennington, D. W. (2004). Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30(5), 701-720.
Reganold, J. P., Glover, J. D., Andrews, P. K., & Hinman, H. R. (2001). Sustainability of three apple production systems. Nature, 410(6831), 926-930.
Romero-Gámez, M., Audsley, E., & Suárez-Rey, E. M. (2014). Life cycle assessment of cultivating lettuce and escarole in Spain. Journal of Cleaner Production, 73, 193-203.
Sadiq, M. S., Singh, I. P., Makama, S. A., Umar, S. M., Isah, M. A., & Grema, I. J. (2016). Agrarian crisis and steps to combat it: Evidence of GHG emission (CO2) in sesame production in Jigawa State, Nigeria. Indian Journal of Economics and Development12(1a), 361-368.
SAIC. (2006). Life Cycle Assessment: Principles and Practice, National Risk Management Research Laboratory, Office of Research and Development, EPA. From http://www. epa. gov/ORD/NRMRL/lcaccess.
Scala, K. D., Vega-Gálvez, A., Ah-Hen, K., Nuñez-Mancilla, Y., Tabilo-Munizaga, G., Pérez-Won, M., & Giovagnoli, C. (2013). Chemical and physical properties of aloe vera (Aloe barbadensis Miller) gel stored after high hydrostatic pressure processing. Food Science and Technology (Campinas)33(1), 52-59.
Sheikh-Davoodi, M. J., Taki, M., & Monjezi, N. (2013). Application of artificial neural networks ANNs to predict energy output for wheat production in Iran. African Journal of Agricultural Research, 8(19), 2099-2105.
Simal, S., Femenıa, A., Llull, P., & Rossello, C. (2000). Dehydration of aloe vera: simulation of drying curves and evaluation of functional properties. Journal of Food Engineering, 43(2), 109-114.
Vagnoni, E., Franca, A., Breedveld, L., Porqueddu, C., Ferrara, R., & Duce, P. (2014). Environmental footprint of milk production from Mediterranean sheep systems. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014), San Francisco, California, USA, 8-10 October, 2014 (pp. 1408-1417).
Williams, A., Audsley, E., & Sandars, D. (2006). Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities: Defra project report IS0205. Zu finden in, From: http://randd. defra. gov. uk/Default. aspx.
Xue, X., Hawkins, T. R., Ingwersen, W. W., & Smith, R. L. (2015). Demonstrating an approach for including pesticide use in life-cycle assessment: Estimating human and ecosystem toxicity of pesticide use in Midwest corn farming. The International Journal of Life Cycle Assessment20(8), 1117..