Modeling and Simulation of Enzymatic Biosensor for Detecting Aflatoxin B1 Using Artificial Neural Network

Document Type : Research Paper

Authors

Agricultural Machinery Engineering Dept., Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran.

Abstract

Aflatoxin B1 (AFB1) is one of the most toxic Aflatoxins that contaminates agricultural products and causes deathlike effects on human health. Determination of AFB1 in food by biosensors is fast, low cost and accurate. In this paper, modeling and simulation of chemical reactions in the AFB1 potentiometric biosensor is performed to determine the optimal reaction rate constants. Enzymatic reactions are simulated using COMSOL software and reaction rates are optimized by Artificial Neural Network (ANN) and Genetic Algorithm (GA). The fitness function of GA is defined by deploying ANN. The data generated during the simulation step were used to train and evaluate the performance of the neural network. Compared with experimental data, COMSOL model simulated biosensor response with MAPE equal to 0.1023 %. In addition trained ANN with 5-48-1 structure predicted biosensor response with MAPEs equal to 0.7074 %, 0.9458 %, 0.7473 % and 0.7492 % for train, validation, test and total data sets respectively. Reaction rates were optimized by Artificial Neural Network (ANN) and Genetic Algorithm. Modeling results showed that trained Neural Network using Genetic Algorithm optimized reaction rates has the lowest MAPE equal to 0.0026 % compared with other models in prediction of AChE enzyme inhibition by AFB1.

Keywords

Main Subjects


Adam, M. A. A., Tabana, Y. M., Musa, K. B., & Sandai, D. A. (2017, March). Effects of different mycotoxins on humans, cell genome and their involvement in cancer (Review). Oncology Reports, Vol. 37, pp. 1321–1336. https://doi.org/10.3892/or.2017.5424
Bahadir, E. B., & Sezgintürk, M. K. (2015, June 1). Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Analytical Biochemistry, Vol. 478, pp. 107–120. https://doi.org/10.1016/j.ab.2015.03.011
Baronas, R., Ivanauskus, F., & Kulys, J. (2010). Mathematical modeling of biosensors. An introduction for chemists and mathematicians. In Springer Series on Chemical Sensors and Biosensors (Vol. 4). https://doi.org/10.1007/b100321
Baronas, R, Ivanauskas, F., Maslovskis, R., & Vaitkus, P. (2004). An analysis of mixtures using amperometric biosensors and artificial neural networks. JOURNAL OF MATHEMATICAL CHEMISTRY, 36(3), 281–297. https://doi.org/10.1023/B:JOMC.0000044225.76158.8e
Baronas, Romas. (2017). Nonlinear effects of diffusion limitations on the response and sensitivity of amperometric biosensors. Electrochimica Acta, 240, 399–407.
https://doi.org/10.1016/j.electacta.2017.04.075
Baronas, Romas, Ivanauskas, F., Maslovskis, R., Radavičius, M., & Vaitkus, P. (2007). Locally weighted neural networks for an analysis of the biosensor response. In Kybernetika (Vol. 43).
Baronas, Romas, Kulys, J., Zilinskas, A., Lancinskas, A., & Baronas, D. (2013). Optimization of the multianalyte determination with biased biosensor response. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 126, 108–116. https://doi.org/10.1016/j.chemolab.2013.05.003
Baronas, Romas, Žilinskas, A., & Litvinas, L. (2016). Optimal design of amperometric biosensors applying multi-objective optimization and decision visualization. Electrochimica Acta, 211, 586–594. https://doi.org/10.1016/j.electacta.2016.06.101
Bazin, I., Tria, S. A., Hayat, A., & Marty, J. L. (2017). New biorecognition molecules in biosensors for the detection of toxins. Biosensors and Bioelectronics, 87, 285–298. https://doi.org/10.1016/j.bios.2016.06.083
Bensana, A., Achi, F., Bouguettoucha, A., & Chebli, D. (2019). Amperometric Determination of Hydrogen Peroxide and its Mathematical Simulation for Horseradish Peroxidase Immobilized on a Sonogel Carbon Electrode. Analytical Letters, 52(8), 1215–1235. https://doi.org/10.1080/00032719.2018.1528614
Bergveld, P. (1970). Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. In IEEE TRANSACTIONS ON BIO-MEDICAL ENGINEERING.
Cometa, M. F., Lorenzini, P., Fortuna, S., Volpe, M. T., Meneguz, A., & Palmery, M. (2005). In vitro inhibitory effect of aflatoxin B 1 on acetylcholinesterase activity in mouse brain. Toxicology, 206, 125–135. https://doi.org/10.1016/j.tox.2004.07.009
Dickinson, E. J. F., Ekström, H., & Fontes, E. (2014). COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review. Electrochemistry Communications, 40, 71–74. https://doi.org/10.1016/j.elecom.2013.12.020
Dokos, S. (2017). Modelling Organs, Tissues, Cells and Devices Using MATLAB and COMSOL Multiphysics. https://doi.org/10.1007/978-3-642-54801-7
Eaborn, C. (1988). Compendium of chemical Terminology: IUPAC Recommendations. Journal of Organometallic Chemistry, 356(2), C76–C77. https://doi.org/10.1016/0022-328x(88)83113-9
Ferreira, L. S., De Souza, M. B., & Folly, R. O. M. (2001). Development of an alcohol fermentation control system based on biosensor measurements interpreted by neural networks. Sensors and Actuators, B: Chemical, Vol. 75, pp. 166–171. https://doi.org/10.1016/S0925-4005(01)00540-8
Gell, R. M., & Carbone, I. (2019). HPLC quantitation of aflatoxin B 1 from fungal mycelium culture. Journal of Microbiological Methods, 158(January), 14–17. https://doi.org/10.1016/j.mimet.2019.01.008
Hansmann, T., Sanson, B., Stojan, J., Weik, M., Marty, J.-L., & Fournier, D. (2009). Kinetic insight into the mechanism of cholinesterasterase inhibition by aflatoxin B1 to develop biosensors. Biosensors and Bioelectronics, 24(7), 2119–2124. https://doi.org/10.1016/j.bios.2008.11.006
Jun, Z., Yu-An, T., Xue-Lan, Z., & Jun, L. (2010). An improved dynamic structure-based neural networks determination approaches to simulation optimization problems. Neural Computing and Applications, 19(6), 883–901. https://doi.org/10.1007/s00521-010-0348-x
Kaffash, A., Rostami, K., & Zare, H. R. (2019). Modeling of an electrochemical nanobiosensor in COMSOL Multiphysics to determine phenol in the presence of horseradish peroxidase enzyme. Enzyme and Microbial Technology, 121, 23–28. https://doi.org/10.1016/j.enzmictec.2018.11.001
Mirjalili, S. (2019). Genetic Algorithm. In Evolutionary Algorithms and Neural Networks (pp. 43–55). https://doi.org/10.1007/978-3-319-93025-1_4
Nautiyal, L., Shivach, P., & Ram, M. (2018). Optimal Designs by Means of Genetic Algorithms. In Soft Computing Techniques and Applications in Mechanical Engineering (pp. 151–161). https://doi.org/10.4018/978-1-5225-3035-0.ch007
P, P., & S, V. (2018). A numerical modelling of an amperometric-enzymatic based uric acid biosensor for GOUT arthritis diseases. Informatics in Medicine Unlocked, 12, 143–147. https://doi.org/10.1016/J.IMU.2018.03.001
Pachauri, V., & Ingebrandt, S. (2016). Biologically sensitive field-effect transistors: from ISFETs to NanoFETs. In P. Estrela (Ed.), BIOSENSOR TECHNOLOGIES FOR DETECTION OF BIOMOLECULES (pp. 81–90). https://doi.org/10.1042/EBC20150009
Pohanka, M. (2016). Electrochemical biosensors based on acetylcholinesterase and butyrylcholinesterase. A review. International Journal of Electrochemical Science, 11(9), 7440–7452. https://doi.org/10.20964/2016.09.16
Rowe, J. E. (2015). Genetic Algorithms. In Springer Handbook of Computational Intelligence (pp. 825–844). https://doi.org/10.1007/978-3-662-43505-2_42
Sheliakina, M., Arkhypova, V., Soldatkin, O., Saiapina, O., Akata, B., & Dzyadevych, S. (2014). Urease-based ISFET biosensor for arginine determination. Talanta, 121, 18–23. https://doi.org/10.1016/j.talanta.2013.12.042
Sherma, J. (2000). Thin-layer chromatography in food and agricultural analysis. Journal of Chromatography A, 880(1–2), 129–147. https://doi.org/10.1016/S0021-9673(99)01132-2
Sichilongo, K. F., Obuseng, V. C., & Okatch, H. (2012). Applications of gas chromatography-mass spectrometry (GC-MS): An examination of selected African cases. Chromatographia, 75(17–18), 1017–1037. https://doi.org/10.1007/s10337-012-2277-6
Songsermsakul, P., & Razzazi-Fazeli, E. (2008, June 18). A review of recent trends in applications of liquid chromatography-mass spectrometry for determination of mycotoxins. Journal of Liquid Chromatography and Related Technologies, Vol. 31, pp. 1641–1686. https://doi.org/10.1080/10826070802126395
Stepurska, Kateryna, Dzyadevych, S., & Gridin, S. (2018). Potentiometric enzyme biosensor for aflatoxin B1 detection – Kinetic simulation. Sensors and Actuators, B: Chemical, 259, 580–586. https://doi.org/10.1016/j.snb.2017.12.092
Stepurska, K. V., Soldatkin, O. O., Kucherenko, I. S., Arkhypova, V. M., Dzyadevych, S. V., & Soldatkin, A. P. (2015). Feasibility of application of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic compounds of different nature. Analytica Chimica Acta, 854, 161–168. https://doi.org/10.1016/j.aca.2014.11.027
Su, Y. (2014). Modeling and characteristic study of thin film based biosensor based on COMSOL. Mathematical Problems in Engineering, 2014, 1–6. https://doi.org/10.1155/2014/581063
Turner, A. P. F. (2013). Biosensors: Sense and sensibility. Chemical Society Reviews, 42(8), 3184–3196. https://doi.org/10.1039/c3cs35528d
Wang, L. (2005). A hybrid genetic algorithm-neural network strategy for simulation optimization. Applied Mathematics and Computation, 170(2), 1329–1343. https://doi.org/10.1016/j.amc.2005.01.024
Žilinskas, A., & Baronas, D. (2011). Optimization-based evaluation of concentrations in modeling the biosensor-aided measurement. Informatica, Vol. 22, pp. 589–600.