Adibzadeh, A., Zaki Dizaji, H., & Aghili Nategh, N. (2019). The possibility of distinguishing different varieties of sugarcane with the electronic nose technique in sugarcane syrup. Biosystem Engineering of Iran, 51(1), 1-10 (In Persian).
Ayari, F. (2018). Development and implementation of an electronic nose system for detection of cow ghee from adulterated samples. Faculty of Agriculture Department of Mechanical Engineering of Biosystems, Razi University.
Al-Maskari, S., Li, X., & Liu Q. (2014). An effective approach to handling noise and drift in electronic noses. In: Wang H, Sharaf MA (eds) Databases theory and applications. Lecture Notes in Computer Science, Springer, Cham, pp, 223–230
Aghili Nategh, N., Anwar, A. & Dalvand, M.J. (2019). Determining the degree of ripeness of strawberries with the help of an electronic nose. Agricultural Machinery Mechanics Research 9: 71-80 (In Persian).
Barreca, D., Nabavi, S. M., Sureda, A., Rasekhian, M., Raciti, R., Silva, A. S., & Mandalari, G. (2020). Almonds (Prunus dulcis Mill. DA webb): A source of nutrients and health-promoting compounds. Nutrients, 12(3), 672.
Becerra-Tomás, N., Paz-Graniel, I., WC Kendall, C., Kahleova, H., Rahelić, D., Sievenpiper, J. L., & Salas-Salvadó, J. (2019). Nut consumption and incidence of cardiovascular diseases and cardiovascular disease mortality: a meta-analysis of prospective cohort studies. Nutrition reviews, 77(10), 691-709.
Mejia, S. B., Kendall, C. W., Viguiliouk, E., Augustin, L. S., Ha, V., Cozma, A. I., ... & Sievenpiper, J. L. (2014). Effect of tree nuts on metabolic syndrome criteria: a systematic review and meta-analysis of randomised controlled trials. BMJ open, 4(7).
Bechthold, A., Boeing, H., Schwedhelm, C., Hoffmann, G., Knüppel, S., Iqbal, K., ... & Schwingshackl, L. (2019). Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose-response meta-analysis of prospective studies. Critical reviews in food science and nutrition, 59(7), 1071-1090.
Barreira, J. C., Casal, S., Ferreira, I. C., Peres, A. M., Pereira, J. A., & Oliveira, M. B. P. (2012). Supervised chemical pattern recognition in almond (Prunus dulcis) Portuguese PDO cultivars: PCA-and LDA-based triennial study. Journal of agricultural and food chemistry, 60(38), 9697-9704.
Chinipardaz, R., Rekabdar, Q., & Yousefi Hajiabad, R. (2015). Studying the human development of countries using mixed audit analysis methods. Quarterly Journal of Economic Studies,3(3), 5-20.( In Persian).
Casas-Agustench, P., Salas-Huetos, A., & Salas-Salvadó, J. (2011). Mediterranean nuts: origins, ancient medicinal benefits and symbolism. Public health nutrition, 14(12A), 2296-2301.
Chang, A. S., Sreedharan, A., & Schneider, K. R. (2013). Peanut and peanut products: A food safety perspective. Food Control, 32(1), 296-303.
De Souza, R. G. M., Schincaglia, R. M., Pimentel, G. D., & Mota, J. F. (2017). Nuts and human health outcomes: a systematic review. Nutrients, 9(12), 1311.
Esteki, M., Farajmand, B., Kolahderazi, Y., & Simal-Gandara, J. (2017). Chromatographic fingerprinting with multivariate data analysis for detection and quantification of apricot kernel in almond powder. Food Analytical Methods, 10, 3312-3320.
Fathizad, H., Safari, A., Bazgir, M., & KHosravi, GH.. (2017). Evaluation of SVM with Kernel method (linear, polynomial, and radial basis) and neural network for land use classification. Iranian Journal of Range and Desert Research, 23(4 ), 729-743. ( In Persian).
Gorji Chakespari, A., Mohammad Nilbakht, A., Sefidkon, F., & Ghasemi Varnamkhasti, M. (2017). Investigation of electronic nose system in classification of Rosa damascena Mill. essential oil by artificial neural network. Iranian Journal of Medicinal and Aromatic Plants Research, 33(3), 339-349.
Gholami, R., Aghili Nategh, N., & Rabbani, H. (2023). Evaluation the effects of temperature and packaging conditions on the quality of button mushroom during storage using e-nose system. Journal of Food Science and Technology, 60(4), 1355-1366.
Jamalizadeh, F., Ghasemi-Varnamkhasti, M., Ghasemi Nafchi, M., Tohidi, M., & Dowlati, M. (2020). Implementation of an olfactory machine system for the classification of different types of black pepper based on geographical origin and detection of cheating in Indian black pepper. Iranian Food Science and Technology Research Journal, 16(4), 479-491.
Karami, H., Rasekh, M., & Mirzaee–Ghaleh, E. (2020). Comparison of chemometrics and AOCS official methods for predicting the shelf life of edible oil. Chemometrics and Intelligent Laboratory Systems, 206, 104165.
Kodad, O., Socias i Company, R., & Alonso, J. M. (2018). Genotypic and environmental effects on tocopherol content in almond. Antioxidants, 7(1), 6.
Khazaei, J., Borghei, A.M., & Rasekh, M. (2003). Determining The Physical and Mechanical Properties of almond and It's Kernel. Journal of Agricultural Sciences, 9(3), 11-34. (In Persian).
Lashgari, M., & MohammadiGol, R. (2016). Discrimination of Golab apple storage time using acoustic impulse response and LDA and QDA discriminant analysis techniques. Iran Agricultural Research, 35(2), 65-70.
Modupalli, N., Naik, M., Sunil, C. K., & Natarajan, V. (2021). Emerging non-destructive methods for quality and safety monitoring of spices. Trends in Food Science & Technology, 108, 133-147.
Mu, F., Gu, Y., Zhang, J., & Zhang, L. (2020). Milk source identification and milk quality estimation using an electronic nose and machine learning techniques. Sensors, 20(15), 4238.
Makarichian, A., Chayjan, R. A., Ahmadi, E., & Zafari, D. (2022). Early detection and classification of fungal infection in garlic (A. sativum) using electronic nose. Computers and Electronics in Agriculture, 192, 106575.
Oliveira, I., Meyer, A. S., Afonso, S., Aires, A., Goufo, P., Trindade, H., & Gonçalves, B. (2019). Phenolic and fatty acid profiles, α‐tocopherol and sucrose contents, and antioxidant capacities of understudied Portuguese almond cultivars. Journal of food biochemistry, 43(7), e12887.
Pearce, T. C., Schiffman, S. S., Nagle, H. T., & Gardner, J. W. (Eds.). (2006). Handbook of machine olfaction: electronic nose technology. John Wiley & Sons.
Sanaeifar, A., Mohtasebi, S., Ghasemi-Varnamkhasti, M., Ahmadi, H., & Lozano Rogado, J. S. (2014). Development and application of a new low cost electronic nose for the ripeness monitoring of banana using computational techniques (PCA, LDA, SIMCA, and SVM).
Sadriyan, S., Javadikia, H., Aghili Nategh, N., Naderloo, L., & Sharifi, R. (2023). Diagnosis of disease in tomato paste by Bacillus subtilis bacteria, Penicillium fungi and Aspergillus fungi with the help of electronic nose. Iranian Journal of Biosystems Engineering, 54(2), 33-47. ( In Persian).
Taheri Garavand, A., Mirzaee Ghaleh, E., & Ayari, F. (2020). Intelligent Classification of Fresh Chicken Meat from Frozen-Thawed Using Olfactory Machine. Journal of Food Technology and Nutrition, 17(2 (66) ), 13-22.
Tahri, K., Tiebe, C., Bougrini, M., Saidi, T., El Hassani, N. E. A., El Bari, N., ... & Bouchikhi, B. (2015). Characterization and discrimination of saffron by multisensory systems, SPME-GC-MS and UV-Vis spectrophotometry. Analytical methods, 7(24), 10328-10338.
USDA (2020). https://apps.fas.usda.gov/psdonline/circulars/production.pdf
Wei, Z., Xiao, X., Wang, J., & Wang, H. (2017). Identification of the rice wines with different marked ages by electronic nose coupled with smartphone and cloud storage platform. Sensors, 17(11), 2500.
Xie, Y., Lin, Y., Li, X., Yang, H., Han, J., Shang, C., ... & Lu, F. (2023). Peanut drying: Effects of various drying methods on drying kinetic models, physicochemical properties, germination characteristics, and microstructure. Information processing in agriculture, 10(4), 447-458.
Yang, H., Ni, J., Gao, J., Han, Z., & Luan, T. (2021). A novel method for peanut variety identification and classification by Improved VGG16. Scientific Reports, 11(1), 15756.
Zhang, H., Wang, J., Ye, S., & Chang, M. (2012). Application of electronic nose and statistical analysis to predict quality indices of peach. Food and Bioprocess Technology, 5, 65-72.