ارزیابی مبتنی بر شبیه‌سازی یک دودکش خورشیدی نصب‌شده روی دیوار برای پشتیبانی فصلی سامانه‌های تهویه مطبوع و بهره‌وری انرژی در گلخانه‌ها: مطالعه موردی در اهواز، ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

این پژوهش عملکرد فصلی دودکش خورشیدی دیواری یکپارچه با سامانه تهویه مطبوع برای کنترل اقلیم گلخانه در اهواز را ارزیابی می‌کند. با استفاده از مدل‌های معتبر دینامیک سیالات محاسباتی، عملکرد سرمایشی، تهویه‌ای و گرمایشی سامانه در یک دوره 9 ماهه و با در نظر گرفتن تغییرات دما، تابش خورشیدی و تجهیزات حرارتی یک گلخانه سقف شیروانی دوتایی با ابعاد ۱۲×۲۰ مترمربع و ارتفاع تاج ۶ متر، تحلیل شد. نتایج نشان داد که در ماه‌های گرم سال، این سامانه دماهای داخلی را 13 تا 17 درجه سلسیوس کاهش داد، اما بازده سرمایشی (56/0در برابر 62/0)، نرخ تعویض ساعتی هوا (82/3 در برابر 01/9) و شاخص یکنواختی دما (73/0 در برابر 82/0) آن در مقایسه با سامانه متعارف فن-پد کمتر بود. با این حال، حذف توان محوری فن منجر به صرفه‌جویی قابل‌توجه انرژی شد. همچنین در ماه‌های سرد سال، دما را به میزان 24/6 درجه سلسیوس افزایش داد و شاخص یکنواختی دما را از 74/0 به 89/0 ارتقا داد، هرچند بازده گرمایشی آن 43/0 و کمتر از انتظار بود. این نتایج نشان می‌دهد که این سامانه، به ویژه در دوره‌های گرمایشی می‌تواند با صرفه‌جویی در انرژی و ارائه کنترل اقلیم مؤثر، جایگزینی پایدار برای سامانه‌های متداول باشد. بهینه‌سازی طراحی، مانند استفاده از پرده‌های حرارتی و سقف‌های موقت در ماه‌های سرد، می‌تواند عملکرد آن را بیشتر بهبود دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation-Based Evaluation of a Wall-Mounted Solar Chimney for Seasonal HVAC Support and Energy Efficiency in Greenhouses: A Case Study in Ahvaz, Iran

نویسندگان [English]

  • Seyed Majid Sajadiye
  • Ayad Saberian
Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

This study evaluates the seasonal performance of a wall-integrated solar chimney combined with an HVAC system for greenhouse climate control in Ahvaz. Using validated computational fluid dynamics (CFD) models, the system’s cooling, ventilation, and heating performance was analyzed over a nine-month period, considering temperature variations, solar radiation, and thermal equipment in a double-pitched roof greenhouse with dimensions of 12×20 m² and a ridge height of 6 m. Results indicated that during hot months, the system reduced indoor temperatures by 13–17°C. However, its cooling efficiency (0.56 vs. 0.62), air exchange rate (3.82 ACH vs. 9.01 ACH), and temperature uniformity index (0.73 vs. 0.82) were lower than those of the conventional fan-pad system. Nonetheless, eliminating fan shaft power resulted in significant energy savings. In cold months, the system increased indoor temperatures by 6.24°C and improved the temperature uniformity index from 0.74 to 0.89, although its heating efficiency (0.43) was lower than expected. These findings suggest that the system, particularly in heating periods, offers a sustainable alternative to conventional systems by enhancing climate control while reducing energy consumption. Design optimizations, such as incorporating thermal curtains and temporary ceiling structures during colder months, could further improve its performance.

کلیدواژه‌ها [English]

  • Computational Fluid Dynamics (CFD)
  • Energy-Efficient Greenhouse Systems
  • Greenhouse Climate Control
  • Solar Chimney for HVAC
  • Sustainable Greenhouse Operations

EXTENDED ABSTRACT

Introduction

 Greenhouses play a pivotal role in sustainable agriculture, providing controlled environments for crop production regardless of external climatic conditions. However, climate control in greenhouses, particularly in regions with extreme temperatures, often demands significant energy resources. This study investigates the performance of a solar chimney-assisted HVAC system for a greenhouse located in Ahvaz, Iran, comparing it with a conventional HVAC system. By harnessing buoyancy-driven natural ventilation, the solar chimney aims to reduce reliance on mechanical components, thereby minimizing energy consumption and operational costs. Through computational fluid dynamics (CFD) modeling, the research explores the system’s effectiveness in maintaining optimal thermal conditions across varying seasonal climates.

Materials and Methods

The study employed validated CFD models to simulate the thermal dynamics of a solar chimney-assisted HVAC system in a greenhouse. Key parameters included greenhouse thermal properties, HVAC configurations, and fluctuating solar heat loads influenced by local weather conditions. Performance metrics such as air exchange rates (ACH), temperature uniformity index (TUI), indoor and canopy temperatures, and HVAC efficiency analyzed over a 9-month period. The greenhouse was divided into cooling (May to September) and heating (November to February) phases to assess system efficiency under diverse climatic scenarios. System components, including a solar chimney, wet pad, and fans, were modeled to evaluate airflow patterns, temperature distribution, and energy efficiency.

Results and Discussion

The solar chimney-assisted system demonstrated notable energy savings by eliminating the need for mechanical fan power, albeit with some cooling limitations in extreme heat. During cooling months, the system achieved an average temperature reduction of 13–17°C, keeping canopy temperatures within acceptable limits. However, its cooling efficiency (ηc) was slightly lower (0.56) compared to the conventional system (0.62). Despite reduced ACH (3.82 vs. 9.01) and TUI (0.73 vs. 0.82), the solar chimney’s passive ventilation showed potential for further optimization. For heating, the solar chimney raised indoor temperatures by an average of 6.24°C, though its heating efficiency (ηh) was modest (0.43) due to rapid thermal equilibrium and heat loss to the cold ceiling. Proposed improvements, such as thermal curtains or temporary lower ceilings, could mitigate heat transfer and enhance system performance. Notably, the system maintained a more consistent canopy temperature (27.01°C, TUI: 0.92) compared to the conventional system’s unheated state (25.37°C, TUI: 0.75). The solar collector’s thermal efficiency was low (0.13 in summer, 0.09 in winter), reflecting its design’s prioritization of ventilation over heat capture.

Conclusion

The solar chimney-assisted HVAC system presents a sustainable solution for greenhouse climate control by significantly reducing energy consumption while maintaining conditions suitable for crop growth. However, its cooling capacity under extreme heat and heating efficiency in colder months require further improvement. Future research should focus on optimizing chimney height and wet pad airflow, integrating hybrid cooling strategies, and conducting comprehensive economic assessments to determine long-term feasibility. Given that these findings are specific to the climatic conditions of Ahvaz, further investigations across diverse climates and greenhouse configurations are necessary to assess the system’s adaptability. With continued refinement and scalability, solar chimney-assisted systems have the potential to transform energy-efficient agriculture, particularly in arid and energy-limited regions.

Author Contributions

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Not applicable

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest. 

Abdallah, A. S. H. (2017). Occupant comfort and indoor temperature reduction by using passive air conditioning system with solar chimney concept in hot arid climate. Procedia Eng, 205, 1100–1107.
Abdallah, A. S. H., Hiroshi, Y., Goto, T., Enteria, N., Radwan, M. M., & Eid, M. A. (2014). Parametric investigation of solar chimney with new cooling tower integrated in a single room for New Assiut city, Egypt climate. Int J Energy Environ Eng, 5(92).
Abdallah, A. S. H., Yoshino, H., Goto, T., Enteria, N., Radwan, M. M., & Eid, M. A. (2013). Integration of evaporative cooling technique with solar chimney to improve indoor thermal environment in the New Assiut City, Egypt. International Journal of Energy and Environmental Engineering, 4(1), 1–15.
Abdeen, A., Serageldin, A. A., Ibrahim, M. G. E., El-Zafarany, A., Ookawara, S., & Murata, R. (2019). Solar chimney optimization for enhancing thermal comfort in Egypt: An experimental and numerical study. Sol Energy, 180, 524–536.
Ahmadikia, H., Moradi, A., & Hojjati, M. (2012). Performance analysis of a wind-catcher with water spray. Int J Green Energy, 9(2), 160–173.
Ali, H. B., Bournet, P.-E., Danjou, V., Morille, B., & Migeon, C. (2014). CFD simulations of the night-time condensation inside a closed glasshouse: Sensitivity analysis to outside external conditions, heating and glass properties. Biosyst. Eng, 127, 159–175. https://doi.org/10.1016/j.biosystemseng.2014.08.017.
American Society of Heating, R., & Engineers, A.-C. (1978). Methods of Testing to Determine the Thermal Performance of Solar Collectors. ASHRAE. https://books.google.com/books?id=ybIPAAAAMAAJ
Arce, J., Jiménez, M. J., Guzmán, J. D., Heras, M. R., Alvarez, G., & Xamán, J. (2009). Experimental study for natural ventilation on a solar chimney. Renewable Energy, 34(12), 2928–2934. https://doi.org/10.1016/j.renene.2009.04.026
Asadi, S., Fakhari, M., Fayaz, R., & Mahdaviparsa, A. (2016). The effect of solar chimney layout on ventilation rate in buildings. Energy Build, 123, 71–78.
ASAE. (2003). EP406.4: Heating, Ventilating, and Cooling Greenhouses. ASAE, St. Joseph, MI, p. 10.
Bartzanas, T., Boulard, T., & Kittas, C. (2004). Effect of vent arrangement on windward ventilation of a tunnel greenhouse. Biosyst. Eng, 88, 479–490. https://doi.org/10.1016/j.biosystemseng.2003.10.006.
Bouchahm, Y., Bourbia, F., & Belhamri, A. (2011). Performance analysis and improvement of the use of wind tower in hot dry climate. Renew Energy, 36(3), 898–906.
Bournet, P. E., Khaoua, S. A. O., Boulard, T., Migeon, C., & Chassériaux, G. (2007). Effect of roof and side opening combinations on the ventilation of a greenhouse using computer simulation. Trans. ASABE, 50, 201–212.
Chen, J., Cai, Y., Xu, F., Hu, H., & Ai, Q. (2014). Analysis and optimization of the fan-pad evaporative cooling system for greenhouse based on CFD. Advances in Mechanical Engineering, 2014. https://doi.org/10.1155/2014/712740
Cheng, F., Li, Y., Wu, Y., Cheng, Y., & Lin, Z. (2023). Experimental study of air distribution and heating performances of deflection ventilation. Energy Build, 282, 112800. https://doi.org/10.1016/j.enbuild.2023.112800.
Cheng, X., Li, D., Shao, L., & Ren, Z. (2021). A virtual sensor simulation system of a flower greenhouse coupled with a new temperature microclimate model using three-dimensional CFD. Computers and Electronics in Agriculture, 181(July 2020), 105934. https://doi.org/10.1016/j.compag.2020.105934
Chung, T. (2002). Computational fluid dynamics. Cambridge university press.
Das, P., & Velayudhan Parvathy, C. (2022). A critical review on solar chimney power plant technology: Influence of environment and geometrical parameters, barriers for commercialization, opportunities, and carbon emission mitigation. Environmental Science and Pollution Research, 29(46), 69367–69387. https://doi.org/10.1007/s11356-022-22623-7
El-Dessouky, H. T. A., Al-Haddad, A. A., & Al-Juwayhel, F. I. (1996). Thermal and hydraulic performance of a modified two-stage evaporative cooler. Renewable Energy, 7(2), 165–176. https://doi.org/10.1016/0960-1481(95)00124-7
Etheridge, D. (2011). Natural ventilation of buildings: Theory, measurement and design. John Wiley & Sons.
Ferroukhi, R., Nagpal, D., Lopez-Peña, A., Hodges, T., Mohtar, R. H., Daher, B., Mohtar, S., & Keulertz, M. (2015). Renewable energy in the water, energy & food nexus. IRENA, Abu Dhabi, 1–125.
Fotiou, S., Akenji, L., Bengtsson, M., Schandl, H., Salem, J., Briggs, E., Chiu, A., Mohanty, B., Tabucanon, M., Fadeeva, Z., Daconto, G., Mathews, C., Metternicht, G., Sang-Arun, J., & Srisakulchairak, T. (2015). Sustainable Consumption and Production: A Handbook for Policy Makers.
Franco, A., Valera, D. L., & Peña, A. (2014). Energy efficiency in greenhouse evaporative cooling techniques: Cooling boxes versus cellulose pads. Energies, 7(3), 1427–1447. https://doi.org/10.3390/en7031427
Ghosal, M. K., Tiwari, G. N., & Srivastava, N. S. L. (2004). Thermal modeling of a greenhouse with an integrated earth to air heat exchanger: An experimental validation. Energy and Buildings, 36(3), 219–227. https://doi.org/10.1016/j.enbuild.2003.10.006
Haghighi, A. P., & Maerefat, M. (2014). Solar ventilation and heating of buildings in sunny winter days using solar chimney. Sustainable Cities and Society, 10, 72–79.
Hosien, M. A., & Selim, S. M. (2017). Effects of the geometrical and operational parameters and alternative outer cover materials on the performance of solar chimney used for natural ventilation. Energy Build, 138, 355–367.
Jiménez-Xamán, C., Xamán, J., Gijón-Rivera, M., Zavala-Guillén, I., Noh-Pat, F., & Simá, E. (2020). Assessing the thermal performance of a rooftop solar chimney attached to a single room. Journal of Building Engineering, 31, 101380.
Jomehadeh, F., Hussen, H. M., Calautit, J. K., Nejat, P., & Ferwati, M. S. (2020). Natural ventilation by windcatcher (Badgir): A review on the impacts of geometry, microclimate and macroclimate. Energy Build, 226(110396).
Kalantar, V. (2009). Numerical simulation of cooling performance of wind tower (BaudGeer) in hot and arid region. Renew Energy, 34(1), 246–254.
Khanal, R., & Lei, C. (2011). Solar chimney—A passive strategy for natural ventilation. Energy and Buildings, 43(8), 1811–1819.
Khani, S. M. R., Bahadori, M. N., & Dehghani-Sanij, A. R. (2017). Experimental investigation of a modular wind tower in hot and dry regions. Energy Sustain Dev, 39, 21–28.
Khaoua, S. A. O., Bournet, P. E., Migeon, C., Boulard, T., & Chassériaux, G. (2006). Analysis of greenhouse ventilation efficiency based on computational fluid dynamics. Biosystems Engineering, 95(1), 83–98.
Kim, K., Yoon, J.-Y., Kwon, H.-J., Han, J.-H., Son, J. E., Nam, S.-W., Giacomelli, G. A., & Lee, I.-B. (2008). 3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers, Biosyst. Eng, 100, 245–255.
Kim, R., Kim, J., Lee, I., Yeo, U., Lee, S., & Decano-Valentin, C. (2021a). Development of three-dimensional visualisation technology of the aerodynamic environment in a greenhouse using CFD and VR technology, part 1: Development of VR a database using CFD. Biosystems Engineering, 207, 33–58.
Kim, R., Kim, J., Lee, I., Yeo, U., Lee, S., & Decano-Valentin, C. (2021b). Development of three-dimensional visualisation technology of the aerodynamic environment in a greenhouse using CFD and VR technology, Part 2: Development of an educational VR simulator. Biosystems Engineering, 207, 12–32.
Kong, J., Niu, J., & Lei, C. (2020). A CFD based approach for determining the optimum inclination angle of a roof-top solar chimney for building ventilation. Sol. Energy, 198, 555–569.
Krüger, E., Suzuki, E., & Matoski, A. (2013). Evaluation of a Trombe wall system in a subtropical location. Energy Build, 66, 364–372.
Lee, K. H., & Strand, R. K. (2009). Enhancement of natural ventilation in buildings using a thermal chimney. Energy Build, 41, 615–621.
Lomas, K. J. (2007). Architectural design of an advanced naturally ventilated building form. Energy Build, 39, 166–181.
Maerefat, M., & Haghighi, A. P. (2010). Natural cooling of stand-alone houses using solar chimney and evaporative cooling cavity. Renew Energy, 35(9), 2040–2052.
Mathur, J., Mathur, S., & Anupma. (2006). Summer-performance of inclined roof solar chimney for natural ventilation. Energy Build, 38, 1156–1163.
Miyazaki, T., Akisawa, A., & Kashiwagi, T. (2006). The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate. Renewable Energy, 31(7), 987–1010.
Mohammadi, B., & Pironneau, O. (1994). Analisys of the K-Epsilon turbulence model. John Wiley and Sons.
Montero, J. I., Munoz, P., Anton, A., & Iglesias, N. (2005). Computational fluid dynamic modelling of night-time energy fluxes in unheated greenhouses. Acta Hortic, 691, 403.
Moosavi, L., Zandi, M., Bidi, M., Behroozizade, E., & Kazemi, I. (2020). New design for solar chimney with integrated windcatcher for space cooling and ventilation. Build Environ, 181(106785).
Nakayama, A., & Kuwahara, F. (2005). Algebraic model for thermal dispersion heat flux within porous media. AIChE Journal, 51(10), 2859–2864.
Nguyen, Y. Q., & Wells, J. C. (2020). A numerical study on induced flowrate and thermal efficiency of a solar chimney with horizontal absorber surface for ventilation of buildings. J. Build. Eng, 28(101050).
Nie, J., Xu, J., Su, H., Gao, H., Jia, J., & Guo, T. (2024). Optimization of characteristic parameters of rectangular solar chimney adapted to agricultural greenhouses. Case Studies in Thermal Engineering, 54, 103971.
Rabani, R., Faghih, A. K., Rabani, M., & Rabani, M. (2014). Numerical simulation of an innovated building cooling system with combination of solar chimney and water spraying system. Heat and Mass Transfer, 50(11), 1609–1625.
Rashid, F. L., Alyasari, H. I., Lafta, M. G., Mahdi, A. J., Al-Obaidi, M. A., Togun, H., Hammoodi, K. A., & Agyekum, E. B. (2025). Current developments, utilization, and effects of phase-change materials integrated with solar chimney: A comprehensive review. Journal of Energy Storage, 105, 114684.
Roache, P. J. (1998). Verification and validation in computational science and engineering.
Ruiz, Á., Salmerón, J., González, R., & Álvarez, S. (2005). A calculation model for Trombe walls and its use as a passive cooling. Proc. Int. Conf. Passiv. Low Energy Cool. Built Environ, 365–369.
Saberian, A., & Sajadiye, S. M. (2019). The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation. Renewable Energy, 138, 722–737. https://doi.org/10.1016/J.RENENE.2019.01.108
Saberian, A., & Sajadiye, S. M. (2020). Assessing the variable performance of fan-and-pad cooling in a subtropical desert greenhouse. Applied Thermal Engineering, 179, 115672. https://doi.org/10.1016/j.applthermaleng.2020.115672
Sethi, V. P. (2009). On the selection of shape and orientation of a greenhouse: Thermal modeling and experimental validation. Solar Energy, 83(1), 21–38. https://doi.org/10.1016/j.solener.2008.05.018
Shklyar, A., & Arbel, A. (2004). Numerical model of the three-dimensional isothermal flow patterns and mass fluxes in a pitched-roof greenhouse. J. Wind Eng. Ind. Aerodyn, 92, 1039–1059.
Sornek, K., Figaj, R., & Papis-Frączek, K. (2025). Development and tests of the novel configuration of the solar chimney with sensible heat storage. Applied Thermal Engineering, 258, 124515.
Spentzou, E. (Efi), Cook, M., & Emmitt, S. (2017). Modelling natural ventilation for summer thermal comfort in Mediterranean dwellings. International Journal of Ventilation, 18, 28–45. https://doi.org/10.1080/14733315.2017.1302658
Swiegers, J. J. (2015). Inlet and outlet shape design of natural circulation building ventilation systems [dissertation. Faculty of Engineering, Stellenbosch University.
Tong, X., Hong, S.-W., & Zhao, L. (2019). Using CFD simulations to develop an upward airflow displacement ventilation system for manure-belt layer houses to improve the indoor environment. Biosystems Engineering, 178, 294–308. https://doi.org/10.1016/j.biosystemseng.2018.08.006
Villar-Ramos, M. M., Macias-Melo, E. V., Aguilar-Castro, K. M., Hernandez-Perez, I., Arce, J., & Serrano-Arellano, J. (2020). Parametric analysis of the thermal behavior of a single-channel solar chimney. Sol Energy, 209, 602–617.
Wang, H., & Lei, C. (2020). A numerical investigation of combined solar chimney and water wall for building ventilation and thermal comfort. Build Environ, 171, 106616.
WANG, X., LUO, J., & LI, X. (2013). CFD Based Study of Heterogeneous Microclimate in a Typical Chinese Greenhouse in Central China. J. Integr. Agric, 12, 914–923. https://doi.org/10.1016/S2095-3119(13)60309-3.
Weather and Climate. (2024). Ahvaz weather and climate. https://weatherandclimate.com/iran/khuzestan/ahvaz#google_vignette
Weather Spark. (2023). Ahvaz Past Weather (Iran). https://weatherspark.com/h/y/104596/2023/Historical-Weather-during-2023-in-Ahvaz-Iran
Yusoff, W. F. M., Salleh, E., Adam, N. M., Sapian, A. R., & Sulaiman, M. Y. (2010). Enhancement of stack ventilation in hot and humid climate using a combination of roof solar collector and vertical stack. Build Environ, 45(10), 2296–2308.