استفاده از پردازش تصویر و شبکه‌های عصبی مصنوعی به منظور تشخیص تقلب در زیره سیاه پارسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسى صنایع غذایی، دانشکده فنى و منابع طبیعى تویسرکان، دانشگاه بوعلى سینا، همدان، ایران

2 گروه مهندسی مکانیک بیوسیستم، دانشگاه جیرفت، جیرفت، ایران

3 گروه مهندسی انرژی، دانشگاه ملی آموزش از راه دور، مادرید، اسپانیا.

4 گروه کشاورزی و گیاهان دارویی، مجتمع آموزش عالی فاطمیه نهاوند، دانشگاه بوعلی سینا، همدان، ایران

چکیده

زیره‌ پارسی ایران نقش ویژه‌ای در صادرات و صنایع داخلی دارد. امروزه، با توجه به عرضه گسترده‌ انواع زیره تقلبی در بازار، شناسایی زیره‌ پارسی اصیل از نمونه های تقلبی آن ضروری است. از میان معیارهای مختلف شناسایی، می‌توان به شاخص‌های رنگ و بافت اشاره نمود. روش‌های سنتی مانند بازرسی دستی و بصری، علاوه بر زمان‌بر بودن، با احتمال بالای خطای انسانی همراه هستند. در این پژوهش، بمنظور ارائه روشی نوین، دقیق و سریع، از فناوری ماشین بینایی برای استخراج ویژگی‌های رنگی و بافتی زیره از تصاویر آن استفاده شد. سپس، با به‌کارگیری شبکه‌ عصبی مصنوعی پرسپترون چندلایه با الگوریتم پس‌انتشار با یک لایه پنهان و ارزیابی نرون های مختلف در این لایه، فرآیند تشخیص زیره‌ پارسی اصیل از انواع تقلبی انجام گرفت. پنج نمونه از زیره‌ پارسی و چهار نمونه از زیره‌ تقلبی با بیشترین فراوانی در بازار مورد ارزیابی قرار گرفتند. نتایج نشان داد بهترین میانگین دقت شناسایی زیره‌ اصیل از تقلبی، با استفاده از شبکه عصبی با یک لایه پنهان با بکارگیری تابع انتقال لگاریتم سیگموئید در این لایه و تابع خطی در لایه خروجی و الگوریتم یادگیری لونبرگ مارکوات، به ترتیب 51/93 درصد برای ویژگی‌های رنگی، 86/ 95 درصد برای ویژگی‌های بافتی و 59/95 درصد برای ترکیب این دو ویژگی (رنگی-بافتی) به دست آمد که نتایج  شبکه عصبی با استفاده از ویژگی های بافتی عملکرد بهتری داشت. نتایج این تحقیق نشان داد که فن آوری ماشین بینایی و شبکه‌های عصبی مصنوعی، قابلیت بالایی در شناسایی زیره‌ اصیل پارسی از نمونه های تقلبی با دقت بالا دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Image Processing and Artificial Neural Networks for Detection of Adulteration in Persian Black Cumin

نویسندگان [English]

  • Majid Dowlati 1
  • Atefe Nekoei 2
  • Iman Golpour 3
  • Atefe Malekian 4
1 Department of Food Science and Technology, Tuyserkan Faculty of Engineering and Natural Resources, Bu-Ali Sina University, Hamedan, Iran
2 Department of Mechanical engineering of Biosystems, University of Jiroft, Jiroft, Iran
3 Department of Energy Engineering, National University of Distance Education, Madrid, Spain
4 Department of Agriculture and Medicinal Plants, Nahavand Higher Education Complex, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

    Persian cumin plays a significant role in both exports and domestic industries of Iran. Today, due to the widespread availability of counterfeit cumin in the market, identifying authentic Persian cumin from its counterfeit counterparts has become increasingly essential. Among the various criteria for identification, color and texture indices are particularly notable. Traditional methods, such as manual and visual inspections, are not only time-consuming but also prone to a high degree of human error. In this study, in order to propose a new, precise, and rapid method, machine vision technology was utilized to extract the color and texture features of cumin from its images. Subsequently, a multi-layer perceptron artificial neural network with a backpropagation algorithm and a hidden layer was employed, evaluating different neurons in this layer to perform the process of distinguishing authentic Persian cumin from counterfeit varieties in the market. In this study, five samples of authentic Persian cumin and four samples of counterfeit cumin, were evaluated. The results showed that the highest average classification and identification accuracy of authentic cumin from counterfeit cumin, using a neural network with one hidden layer and employing a sigmoid transfer function in this layer and a linear function in the output layer with the Levenberg-Marquardt learning algorithm, were 93.51% for color features, 95.86% for texture features, and 95.59% for the combination of these two features (color-texture). However, the findings showed that machine vision technology and artificial neural networks have a high capability in accurately identifying authentic Persian cumin from counterfeit samples. 

کلیدواژه‌ها [English]

  • Black cumin
  • Artificial neural networks
  • Computer vision technology
  • Texture and color features

EXTENDED ABSTRACT

Introduction

Medicinal plants have gained considerable attention as valuable natural resources in scientific and industrial communities. Iran, with its high diversity of medicinal plants, particularly Bunium persicum (Persian cumin), holds a significant position in this field. Bunium persicum, a herbaceous plant, grows in various regions of Asia and Europe. One of the main challenges in the cumin market is fraud, where authentic cumin is often mixed with lower-value species. Therefore, there is an increasing need for precise methods to distinguish genuine cumin from counterfeit ones. Image processing, as a non-destructive and innovative method, has been widely used in the food industry for quality evaluation and product differentiation. Color and texture features play a crucial role in food quality assessment, and artificial neural networks (ANNs) are suitable tools for classifying these complex features due to their capacity for data analysis.

Materials and Methods

In this study, nine cumin samples were collected from the local market of Kerman, consisting of five authentic Bunium persicum samples and four counterfeit samples (including European black cumin, artificially colored green cumin, and two types of low-quality mixed cumin). The images of the samples were captured using a digital camera, fluorescent light source, computer, and image processing software in a controlled environment. After image acquisition, the samples were converted into different color spaces (RGB, HSI, HSV), and their color and texture features were extracted. The color features included the mean, variance, standard deviation, and range of color components. The texture features were extracted using the Gray-Level Co-occurrence Matrix (GLCM) and included contrast, homogeneity, correlation, energy, and entropy. A total of 36 color features and 108 texture features were considered for analysis. To reduce complexity and enhance model accuracy, important features were selected using factor analysis. Then, a Multilayer Perceptron (MLP) neural network with the Levenberg-Marquardt backpropagation method in MATLAB software was used for classification and recognition. The data were divided into three subsets: training (60%), validation (20%), and testing (20%).

Results and Discussion

The classification accuracy using color features varied. The highest accuracy (93.51%) was achieved using the sigmoid transfer function in the hidden layer and a linear output function. The reduced color features, selected using factor analysis, resulted in improved classification accuracy. For texture features, the highest classification accuracy (95.86%) was achieved with a network using 108 texture features. The network with the sigmoid transfer function in the hidden layer and a linear output function showed the best performance. Texture features outperformed color features in classification accuracy. The combination of color and texture features resulted in better performance, with the classification accuracy reaching 95.95%. The reduced combined features, obtained through factor analysis, provided greater accuracy than using color or texture features alone. Factor analysis was employed at all stages to reduce the number of features and eliminate redundant features, which not only reduced computational complexity but also improved model accuracy.

Conclusion

This study evaluated the use of a combination of image processing and artificial neural networks (ANNs) for the identification and classification of authentic and counterfeit Bunium persicum. The results demonstrated that texture features provided the highest accuracy in distinguishing the two types of cumin, with overall classification accuracies of 93.51%, 95.86%, and 95.59% for color, texture, and combined features, respectively. Additionally, after feature selection using factor analysis, the best average classification accuracy with color, texture, and combined features was 93.81%, 95.65%, and 94.67%, respectively. The classification accuracy increased with the reduction of color features, while a decrease in texture and combined features led to a reduction in classification accuracy. These findings highlight the significant potential of image processing and ANNs in identifying and classifying genuine cumin from counterfeit ones. The application of these methods in the design of intelligent systems for identifying authentic and counterfeit cumin in the food industry could be a valuable step towards improving food quality and safety.

Author Contributions

Conceptualization, M.D., I.G. A.N.; methodology, M.D. and A.N.; software, I.G. and A.M.; validation, A.N., M.D., I.G. and A.M.; formal analysis, I.G.; investigation, A.N. and M.D.; resources, M.D. and A.M.; data curation, M.D. and A.M.; writing-original draft preparation, A.M. and M.D; writing-review and editing, A.M. and M.D.; visualization, A.M. and I.G..; supervision, M.D.; project administration, M.D.

All authors have read and agreed to the published version of the manuscript.” All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

All data generated or analyzed during this study are available from the corresponding author on request

Acknowledgements

The authors would like to extend their sincere appreciations for financial support provided by the University of Jiroft. The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Akbari Adergani, B., MohammadzadehMoghadam, M., KarimiNoghabi, M., Mohammadpour, M., KhalilianMovahhed, M.2022. Application of Computer Vision on Non-Destructive Detection of the Authentic and Adulterated Saffron. Saffron Agronomy & Technology, 9(4): 409-429.
Agnihotri, V., Shashni, S., & Tripathi, M. (2024). Morphological, phytochemical and pharmacological properties of Carum carvi (caraway) and Bunium persicum (black caraway) seeds: A review. Journal of Food Engineering and Technology, 13(1), 25-31.
Anvarkhah, S. (2012). Identification of medicinal plant seeds using advanced methods (Master's thesis, Faculty of Agriculture, Ferdowsi University of Mashhad). (in Persian)
Azimzadeh, M., & Amiri, R. (2012). Genetic diversity of Iranian Bunium persicum germplasm by morphological markers and essential oil components. Journal of Medicinal Plants Research, 6(7), 1119-1129.
Bansal, S., Sharma, K., Gautam, V., Lone, A. A., Malhotra, E. V., Kumar, S., & Singh, R. (2023). A comprehensive review of Bunium persicum: A valuable medicinal spice. Food Reviews International, 39(2), 1184-1202.
Burdock, G. A. (2022). Assessment of black cumin (Nigella sativa L.) as a food ingredient and putative therapeutic agent. Regulatory Toxicology and Pharmacology, 128, 105088.
Chaker Al-Hosseini, M. & Esmaeili Zeini, A. M., (2017). Presenting a method for detecting the counterfeit of saffron stigma product using image processing. Master's thesis, Faculty of Technology. Yazd University of Science and Art.
Choudhary, P., Seth, A., & Lata Verma, K. (2022). Identification of adulterants and contaminants in black pepper, cumin, fennel, coriander, and turmeric using GC-MS technique for forensic investigation. Journal of Food Science and Industry Research, 18(3), 31-51. (In Persian)
Dowlati, M. (2013). Quality detection and grading of Rutilus frisii kutum using a combination of machine vision techniques and artificial neural networks (Doctoral dissertation, Faculty of Agricultural Engineering and Technology, University of Tehran). (in Persian)
Dowlati, M., Nekouei, A., & Golpour, I. (2016). Identification and classification of Persian cumin (Bunium persicum Boiss) populations using image processing combined with artificial neural networks. Agricultural Machinery Research, 5(1), 37-46. (in Persian)
Dowlati, M., Mohtasebi, S. S., & de la Guardia, M. (2012). Application of machine-vision techniques to fish-quality assessment. Trends in Analytical Chemistry, 40, 168-179.
Dowlati, M., Mohtasebi, S. S., Omid, M., Razavi, S. H., Jamzad, M., & de la Guardia, M. (2013). Freshness assessment of gilthead sea bream (Sparus aurata) by machine vision based on gill and eye color changes. Journal of Food Engineering, 119(2), 277-287.
Fayazi, S., Abbaspour Fard, M. H., Monjami, S. A. H., Sadrnia, H., & Rouhani, A. (2013). Identification and differentiation of three Iranian rice varieties in mixed populations using texture features and LVQ neural network. Agricultural Mechanization Journal, 1(1), 35-43. (in Persian)
Golpour, A. (2012). Prediction, detection, and kinetic study of rice drying varieties using image processing and artificial neural networks (Master's thesis, Faculty of Agriculture, Bu-Ali Sina University). (in Persian)
Golpour, A., Amiri Paryan, J., Amiri Chayjan, R., & Khazaei, J. (2015). Identification of paddy, brown, and white rice varieties based on texture features and artificial neural network. Agricultural Machinery Journal, 5(1), 73-81. (in Persian)
Golpour, I., Amiri Parian, J., & Amiri Chayjan, R. (2014). Identification and classification of bulk paddy, brown, and white rice cultivars with colour features extraction using image analysis and neural network. Czech Journal of Food Science, 32(3), 280-287.
Heistev, R. M. (1998). The ANN book. Boston.
Long, F., Zhang, H., & Feng, D. D. (2003). Fundamentals of content-based image retrieval. In Multimedia Information Retrieval and Management - Technological Fundamentals and Applications (pp. 1-26). Springer-Verlag.
Mousavi Rad, S. J. (2013). Design of an expert system for rice variety authentication using a combination of texture features in rice bulk images. Journal of Machine Vision and Image Processing, 1(1), 11-18. (in Persian)
Navidshad, B., Dadashi Orang, A., & Royan, M. (2024). The potential of black cumin (Nigella sativa) as a natural feed additive for poultry: An update. World's Poultry Science Journal, 1-15.
Pourreza, A. R. (2011). Determination of variety and impurity detection in wheat seeds using image processing (Master's thesis, Faculty of Agriculture, Ferdowsi University of Mashhad). (in Persian)
Razavi, S. M., Bostan, A., & Rahbari, R. (2010). Computer image analysis and physico-mechanical properties of wild sage seed (Salvia macrosiphon). International Journal of Food Properties, 13(2), 308-316.
Safari Amiri, Gh., Ghasemi Varnamkhasti, T., Mohtasebi, S. S., & Dolati, M. (2018). Application of an electronic nose system for fraud detection in wild cumin. New Technologies in Food Industry, 5(1), 527-541. (in Persian)
Saldana, E., Siche, R., Huamán, R., Luján, M., Castro, W., & Quevedo, R. (2013). Computer vision system in real-time for color determination on flat surface food. Scientia Agropecuaria, 4(1), 55-63.
Sharifzadeh, Y. (2003). Investigation of fraud in black cumin (Bunium persicum) (Doctoral dissertation, Faculty of Pharmacy, University of Tehran). (in Persian)
Zapotoczny, P. (2011). Discrimination of wheat grain varieties using image analysis and neural networks. Part I. Single kernel texture. Journal of Cereal Science, 54(1), 60-68.
Zheng, C., Sun, D. W., & Zheng, L. (2006). Recent developments and applications of image features for food quality evaluation and inspection – A review. Trends in Food Science & Technology, 17(12), 642-655.