تحلیل انرژی و اقتصادی تولید گل محمدی با بهره‌گیری از یادگیری ماشین: مطالعه موردی شهرستان دامغان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک ماشین‌های کشاورزی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

2 مرکز تحقیقات کشاورزی و آموزش کشاورزی و منابع طبیعی استان سمنان، سازمان تحقیقات، آموزش و ترویج کشاورزی، سمنان، ایران

10.22059/ijbse.2025.393681.665595

چکیده

این مطالعه باهدف تحلیل انرژی و اقتصادی تولید گل محمدی در شهرستان دامغان و مدل‌سازی مصرف بهینه نهاده‌ها با استفاده از الگوریتم‌های یادگیری ماشین انجام شد. داده‌های موردنیاز از طریق پرسش‌نامه و مصاحبه جمع‌آوری شد. نتایج نشان داد که کل انرژی مصرفی در تولید گل محمدی 43438 مگاژول بر هکتار است که برق با 6/79 درصد بیشترین سهم را در مصرف انرژی داشتند. شاخص‌ بهره‌وری انرژی 02/0 کیلوگرم بر مگاژول  به دست آمد که نشان‌دهنده اتلاف انرژی قابل‌توجه در نظام تولیدی است. از سوی دیگر، تحلیل اقتصادی حاکی از سود خالص 395/44 میلیون تومان در هکتار و نسبت فایده به هزینه 07/2 بود که بیانگر توجیه اقتصادی مناسب تولید گل محمدی علی‌رغم مصرف انرژی بالا است .برای مدل‌سازی و پیش‌بینی مصرف انرژی و هزینه‌ها، از الگوریتم‌های تقویت‌کننده گرادیان (GBR)، تقویت‌کننده گرادیان پیشرفته (XGBR) و جنگل تصادفی (RFR) استفاده شد. نتایج نشان داد که مدل GBR با ضریب تبیین (R2) 99/0 و خطای حداقل برابر با 97/251 بهترین عملکرد را در پیش‌بینی انرژی و هزینه‌ها دارد. همچنین، تحلیل حساسیت با روش  SHAPمشخص کرد که کود حیوانی و برق بیشترین تأثیر را بر مصرف انرژی دارند، درحالی‌که مدیریت آب و کودهای شیمیایی نقش کلیدی در سودآوری اقتصادی ایفا می‌کنند .نتایج نشان داد که بهینه‌سازی مصرف انرژی در تولید گل محمدی از طریق کاهش مصرف برق و کودها امکان‌پذیر است و استفاده از یادگیری ماشین نیز به‌عنوان یک ابزار کارآمد در پیش‌بینی و مدیریت نهاده‌های کشاورزی پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating energy consumption and economic indicators of rose production using machine learning: A case study of Damghan County

نویسندگان [English]

  • seyed omid davodalmosavi 1
  • Farzaneh Bahadori 2
  • shahin rafiee 1
1 Department of Agricultural Machinery Mechanical Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Associate Professor, Agricultural Research and Education Center, Semnan Province, Agricultural Research, Education and Extension Organization, Semnan, Iran
چکیده [English]

This study aimed to analyze the energy and economic aspects of rose production in Damghan County and model the optimal use of inputs using machine learning algorithms. The required data were collected through questionnaires and interviews. The results showed that the total energy consumed in rose production was 43,438 megajoules per hectare, with electricity accounting for 79.6 percent of the energy consumption. The energy efficiency index was 0.02 kg/megajoule, which indicates a significant energy loss in the production system. On the other hand, the economic analysis indicated a net profit of 44.395 million tomans per hectare and a benefit-to-cost ratio of 2.07, which indicates the appropriate economic justification for rose production despite high energy consumption. Gradient Booster (GBR), Enhanced Gradient Booster (XGBR), and Random Forest (RFR) algorithms were used to model and predict energy consumption and costs. The results showed that the GBR model with a coefficient of determination (R2) of 0.99 and a minimum error of 251.97 has the best performance in predicting energy and costs. Also, sensitivity analysis using the SHAP method revealed that animal manure and electricity have the greatest impact on energy consumption, while water management and chemical fertilizers play a key role in economic profitability. The results showed that optimizing energy consumption in rose production is possible by reducing electricity and fertilizer consumption, and the use of machine learning is also suggested as an efficient tool in predicting and managing agricultural inputs.

کلیدواژه‌ها [English]

  • Medicinal plants
  • rose
  • energy management
  • economic

EXTENDED ABSTRACT

Introduction

Medicinal plants, especially rose (Rosa damascena), play an important role in the agricultural economy of Iran due to their extensive applications in the perfumery, food, and pharmaceutical industries. With the increasing global demand for plant products, it is essential to optimize energy consumption and analyze the economic aspects of the production of these plants. Previous studies have shown that agricultural production systems are often faced with high energy waste and costs, but few studies have addressed the modeling of these parameters with modern tools such as machine learning. This study aimed to analyze the energy and economic aspects of rose production in Damghan County and provide predictive models based on machine learning algorithms.

Research Method

 In this study, energy modeling and economic analysis of rose production in Damghan County was conducted using machine learning algorithms. The energy consumption pattern and economic and cost analysis of rose production were examined. Information was collected through a specialized questionnaire and interview, and simple random sampling was used to determine the sample size. Three algorithms were used for modeling: gradient boosting regression (GBR), enhanced gradient boosting regression (XGBR), and random forest regression (RFR).

Results

The total energy consumption in production was 43438.83 megajoules per hectare. Electrical energy and nitrogen fertilizer accounted for the largest share of energy consumption, accounting for about 79.60 and 9.92 percent of the total energy consumption, respectively. The energy ratio, energy efficiency, energy intensity, and net energy added were 0.08, 0.021 kg/MJ, 47.20 MJ/kg, and net energy was -39574 megajoule, respectively. The results of economic analysis showed that the total production costs of rose are 44.395 million tomans per hectare. Animal fertilizer, with a share of 33.15 percent, and human labor, with a share of 29.47 percent of the total costs, accounted for the largest share of the production costs. For energy, GBR, XGBR, and RFR were the best models with R2 values of 0.99, 0.97, and 0.92, respectively, and for the economic production model, GBR, XGBR, and RFR were the best models with R2 values of 0.99, 0.96, and 0.88.

Conclusions

This study shows that rose production in the study area is economically profitable and justifiable, although energy consumption pattern analysis indicates significant energy waste in rose production. The application of machine learning methods in this study demonstrated the high ability of this technology to predict and optimize resource consumption. The results showed that intelligent management of key inputs such as water resources, irrigation systems, and fertilizers can help reduce energy consumption, reduce costs, and increase profits. These findings emphasize the need to apply advanced technical solutions and adopt modern and mechanized management methods to achieve sustainable and efficient rose production, in a way that maintains economic justification while optimizing resource consumption.

Author Contributions

The idea and design of this study were carried out by Farzane Bahadori and Seyed Omid Davodalmousavi. The identification method, software and validation were carried out by Shahin Rafiee and the research and data and resource collection and writing of the first draft were carried out by Seyed Omid Davodalmousavi. The project management was carried out by Farzane Bahadori and Seyed Omid Davodalmousavi. All authors have read and agreed to the published version of the manuscript.

Data Access

All data generated or analyzed during this study are available upon request from the corresponding author.

Acknowledgements

This study was carried out by the Forest and Rangeland Research Department, Agricultural and Natural Resources Research and Education Center of Semnan Province, Agricultural Research, Education and Extension Organization, Semnan, Iran, to whom we are grateful. The authors would like to thank all the participants in the present study.

Ethical Considerations

The authors avoided data fabrication, falsification, plagiarism and misconduct.

Conflict of Interest

The author declares no conflicts of interest.

Akbolat, D., Ekinci, K., & Demircan, V. (2006). Energy input-output and economic analysis of rose production in Turkey.
Amirahmadi, E., Moudrý, J., Konvalina, P., Hörtenhuber, S. J., Ghorbani, M., Neugschw&tner, R. W.,... & Kopecký, M. (2022). Environmental Life Cycle Assessment in Organic & Conventional Rice Farming Systems: Using a Cradle to Farm Gate Approach. Sustainability, 14(23), 15870.
Anonymous. Department of Jihad-e-Agriculture ofIran. (2022). Annual agricultural statistics,  Fromhttp://www.maj.ir/ (In Persian)
Anonymous. Statistical Center of Iran. (2022). The estimated population of each city, From http://www.amar.org.ir. (In Persian)
Bahirat, J. B., & Jadhav, H. G. (2011). To study the cost, returns and profitability of rose production in Satara district, Maharashtra.‏
Berg, G. V. D. (1996). Rose factories, fiction or future?.‏
Cola, G., Mariani, L., Toscano, S., Romano, D., & Ferrante, A. (2020). Comparison of greenhouse energy requirements for rose cultivation in Europe and North Africa. Agronomy10(3), 422.‏
consumption patterns and greenhouse gas emissions in irrigated wheat production in Ardabil province. Quarterly Journal of Environmental Sciences (In Persian)
Davodalmosavi, S. O., Rafiee, S., & Jafari. (2024). Analysis and modeling of energy and greenhouse gas emissions in apple production using machine learning in Nazarabad County. Agricultural Mechanization, 8(4), 81-96. (In Persian)
Davodalmosavi, S. O., Rafiee, S., & Jafari, A. (2023). Modeling of peach production energy using machine learning in Nazarabad township, Alborz province. Iranian Journal of Biosystems Engineering54(1), 53-71.‏
Elhami, B., Raini, M. G. N., Taki, M., Marzban, A., & Heidarisoltanabadi, M. (2021). Analysis & comparison of energy-economic-environmental cycle in two cultivation methods (seeding & transplanting) for onion production (case study: central parts of Iran). Renewable Energy, 178, 875-890
Esfanjari Kenari, R. , Shaabanzadeh, M. , Jansooz, P. and Omidi, A. (2015). Analysis energy consumption in greenhouse cucumber production (a case study in Tehran province). Iranian Journal of Biosystems Engineering46(2), 125-134. doi: 10.22059/ijbse.2015.55670(In Persian)
Fabiani, S., Vanino, S., Napoli, R., & Nino, P. (2020). Water energy food nexus approach for sustainability assessment at farm level: An experience from an intensive agricultural area in central Italy. Environmental Science & Policy, 104, 1-12.‏
Godarzi, M, Khalifazadeh, R and Eftekhari, A. (2018), Species richness of Semnan province from the perspective of medicinal plants, 7th National Conference on Rangeland and Rangeland Management of Iran. (In Persian)
Heydari Sultanabadi. (2023). Determination of energy production function in water wheat of Isfahan province. Energy Engineering and Management, 11(1), 116-127.
Hosseini, N, Tavakoli Dinani, E. (2010). Study of the efficiency of inputs in the cultivation of the medicinal plant dill (Anethum graveolens L.) in the Roudehen region. Herbal Medicines, 1(3), 57-62. SID. https://sid.ir/paper/193768/fa (In Persian)
Kamir, E., Waldner, F., & Hochman, Z. (2020). Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods. ISPRS Journal of Photogrammetry and Remote Sensing, 160, 124-135.‏
Kashfi Bonab, A. (2019). Comparative economic advantage of cultivation and trade of medicinal plants in Iran and its value in world markets (In Persian).
Khanali, M, Hosseinzadeh Band-Bafha, H, (2017), Energy flow assessment and environmental impacts of greenhouse production of medicinal plants with a life cycle assessment approach, case study of Aloe vera plant, https://civilica.com/doc/1660329 (In Persian)
Khoshkho, M, Salehi, H, Azizi, M, Mobali, M, Vahdati, K, Grigorian, V, Tafazzoli, E and Haghighi, M. (1400). Current status of horticultural crop production in Iran: A documentary review 2- Vegetables, flowers, ornamental plants and medicinal plants. Journal of Strategic Research in Agricultural Sciences and Natural Resources, 6(1), 69-84. doi: 10.22047/srjasnr.2021.128743 (In Persian)
Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2013). Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach. Energy55, 676-682.
Makadia, J. J., Patel, K. S., & Ahir, N. J. (2012). Economics of production of the rose cut flowers in south Gujarat.‏
Malek, Saeed and Musharraf, Laleh. (1400). The effect of different storage conditions on the quantitative and qualitative properties of rose essential oil (Rosa damascena Mill.). Food Industry Engineering Research, 20(1), 69-78. doi: 10.22092/fooder.2019.125321.1203 (In Persian)
Monjezi. N., 2019. Investigation of energy consumption efficiency and economic analysis of grape production in the orchards of Karun County, Grape Extension Magazine. (In Persian)
Mostafaeipour, A., Fakhrzad, M. B., Gharaat, S., Jahangiri, M., Dhanraj, J. A., B&, S.& Mosavi, A. (2020). Machine learning for prediction of energy in wheat production. Agriculture, 10(11), 517
Nakhaei, F. , Ghanbari, S. A. , Asgharipour, M. R. and Seyedabadi, E. (2025). Evaluating the Sustainability of the Mechanized and Traditional Agroecosystem of Damask Rose Production Based on Emergy Analysis in Nehbandan. Journal of Agricultural Science and Sustainable Production35(1), 237-253. doi: 10.22034/saps.2023.56810.3050
Pourmehdi, K., & Kheiralipour, K. (2024). Net energy gain efficiency, a new indicator to analyze energy systems, case study: Comparing wheat production systems. Results in Engineering22, 102211.
Rafiee, S., Avval, S. H. M., & Mohammadi, A. (2010). Modeling & sensitivity analysis of energy inputs for apple production in Iran. Energy, 35(8), 3301-3306.‏
Rahimi, Ruhollah, Gorji Khakspari, Abbas, Abbaszadeh, Bahloul and Araghi, Mohammad Kazem. (2019). Comparison of energy indices in the production of four medicinal plant species (peppermint, tarragon, basil and savory). Iranian Medicinal and Aromatic Plant Research, 36(2), 183-194. (In Persian)
Rahimzadeh, Saeideh, Sohrabi, Yousef, Heidari, Gholamreza and Pirzad, Alireza. (2011). The effect of biofertilizer application on some morphological traits and yield of the medicinal plant Dracocephalum moldavica L. Horticultural Sciences. (In Persian)
Sadr, & Islami. (2021). Climatic adjustments on pistachio yield using C&R decision tree algorithm 20.1001. 1.23453419. 1400.9. 1.6. 3. Agricultural Meteorology, 9(1), 53-62.
Sahabi, H., Feizi, H., & Karbasi, A. (2016). Is saffron more energy and economic efficient than wheat in crop rotation systems in northeast Iran?. Sustainable Production and Consumption5, 29-35.‏
Sujatha, S., & Tejaswini, P. (2021). Integrated analysis of energy and resource use indicators in rose production systems in open-field and protected condition in India. Cleaner Environmental Systems3, 100051.‏
Tiwari, Y., Awasthi, P. K., & Pandey, P. R. (2020). Economic Analysis of Cut Flower (Rose and Gerbera) Production under Polyhouse in Jabalpur District of Madhya Pradesh, India. Asian Journal of Agricultural Extension, Economics & Sociology37(4), 1-5.‏
Usman, M., Ashfaq, M., Taj, S., & Abid, M. (2014). An economic analysis of cut-rose flower in Punjab, Pakistan. JAPS: Journal of Animal & Plant Sciences24(2).
Vahid-Berimanlou, R., & Nadi, F. (2021). Investigating the energy consumption and economic indices for sweet-cherry and sour-cherry production in Northeastern Iran. Journal of Agricultural Machinery11(1), 97-110.‏
Yavari, Jalal and Jahanaraian, Fatemeh, 1400, Medicinal Plants and the Importance of Their Commercialization, First National Conference on Medicinal Plants, Entrepreneurship and Commercialization, Jiroft, https://civilica.com/doc/1353720. (In Persian)
Zahedi, Morteza, Eshghizadeh, Hamidreza, and Mandani, Farzad. (2014). Evaluation of energy consumption efficiency and economic indicators in the safflower production system in Isfahan province. Ecological Agriculture, 4(2), 45-53. (In Persian)
ZAMAN, D. (2013). Economic analysis of rose cultivation in some selected areas of Jessore District in Bangladesh (Doctoral dissertation, DEPT. OF AGRICULTURAL ECONOMICS).
Fahim, P., Vaezi, N., Shahraki, A., & Khoshnevisan, M. (2022). An integration of genetic feature selector, histogram-based outlier score, and deep learning for wind turbine power prediction. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(4), 9342-9365.
Imran, M., & Ozcatalbas, O. (2021). Optimization of energy consumption and its effect on the energy use efficiency and greenhouse gas emissions of wheat production in Turkey. Discover Sustainability, 2(1), 28.
khoobbakht, g., & Akram, A. (2020). Investigating the Pattern of Energy Consumption, Sensitivity Analysis and Economic Performance of Plum Production in Khansar Township, Isfahan, Iran. Iranian Journal of Biosystems Engineering, 51(2), 263-272. doi:10.22059/ijbse.2020.278816.665175
Kushwaha, A., Wasnik, K., Kumar, D., Pandey, M., Nannaware, A. D., & Verma, R. K. (2024). On-farm energy input-output and economic analysis of important essential oil-bearing Mint species in subtropical India. Energy Conversion and Management: X, 23, 100617.
Mirzaei, J., Parashkoohi, M. G., Zamani, D. M., & Afshari, H. (2023). Examining energy use efficiency and conducting an environmental life cycle assessment through the application of artificial intelligence: A case study on the production of cumin and fennel. Results in Engineering, 20, 101522.
Mousavi-Avval, S. H., Rafiee, S., & Mohammadi, A. (2011). Optimization of energy consumption and input costs for apple production in Iran using data envelopment analysis. Energy, 36(2), 909-916.
Pahlavan, R., Omid, M., Rafiee, S., & Mousavi-Avval, S. H. (2012). Optimization of energy consumption for rose production in Iran. Energy for sustainable development, 16(2), 236-241.
Rahimi, R., Chakespari, A. G., Abaszadeh, B., & Araghi, M. (2020). Energy indices compartion in four medicinal herbs production (Mentha piperita L., Artemisia dracunculus L., Ocimum basilicum L. and Satureja hortensis L.).
Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2020). Explainable machine learning for scientific insights and discoveries. Ieee Access, 8, 42200-42216.
Salmerón-Manzano, E., Garrido-Cardenas, J. A., & Manzano-Agugliaro, F. (2020). Worldwide research trends on medicinal plants. International journal of environmental research and public health, 17(10), 3376.