ارزیابی زیست محیطی تولید زیتون در سناریوهای سنتی و نیمه مکانیزه با روش چرخه زندگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان. زنجان، ایران،

2 گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان. زنجان، ایران

10.22059/ijbse.2025.395620.665596

چکیده

در سال‌های اخیر، بخش زیتون ایران تغییرات عمده‌ای در زمینه روش‌های زراعی تجربه کرده است. کشت باغ‌های زیتون از سامانه‌های سنتی به سمت سامانه‌های نیمه مکانیزه در حال حرکت است. این پژوهش با هدف ارزیابی اثرات محیط‌زیستی تولید زیتون در دو سامانه سنتی و نیمه‌مکانیزه در منطقه طارم استان زنجان، با استفاده از روش ارزیابی چرخه زندگی (LCA) انجام شد. داده‌های مورد نیاز از طریق پرسش‌نامه‌های تکمیل‌شده توسط ۵۰ باغدار و مصاحبه با مدیران کشاورزی جمع‌آوری گردید. مرز سامانه از گهواره تا درگاه مزرعه تعریف شد و واحد عملکردی، یک تن زیتون در نظر گرفته شد. نتایج نشان داد که سامانه نیمه‌مکانیزه در مقایسه با سامانه سنتی، با کاهش ۳۱ درصدی پتانسیل گرمایش جهانی (۱۲۸۶٫۱۱ به ۸۸۸٫۶۶ کیلوگرم CO₂ معادل)، ۲۳ درصدی مصرف انرژی (۱۴۳۹۹٫۷۳ به ۱۱۰۹۴٫۶۱ مگاژول) و ۳۸ درصدی سمیت انسانی (۵۵۳٫۴۰ به ۳۴۴٫۵۴ کیلوگرم ۱,۴-DB معادل)، عملکرد محیط‌زیستی بهتری دارد. تحلیل سهم نهاده‌ها نشان داد که الکتریسیته (۵۸ تا ۷۴ درصد) و کودهای شیمیایی (۱۵تا۲۰ درصد) بیشترین تأثیر را بر بار محیط‌زیستی دارند. با این حال، مصرف سوخت دیزل در سامانه نیمه‌مکانیزه به دلیل مکانیزاسیون جزئی، منجر به افزایش ۲۰ درصدی تخریب لایه ازون شد. این مطالعه پیشنهاد می‌کند که بهبود کارایی آبیاری و مدیریت مصرف کودها می‌تواند پایداری محیط‌زیستی تولید زیتون را در هر دو سامانه افزایش دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Environmental Assessment of Olive Production in Traditional and Semi-Mechanized Scenarios Using Life Cycle Assessment

نویسندگان [English]

  • Behnam Mohammadi 1
  • Majid Namdari 1
  • Alireza Yousefi 2
1 Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
2 Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
چکیده [English]

In recent years, Iran's olive sector has experienced significant changes in agricultural practices. The cultivation of olive orchards is transitioning from traditional systems towards semi-mechanized approaches. This research aimed to evaluate the environmental impacts of olive production in both traditional and semi-mechanized systems in the Tarom region of Zanjan Province, using the Life Cycle Assessment (LCA) methodology. The necessary data were collected through questionnaires completed by 50 olive growers and interviews with agricultural managers. The system boundary was defined from cradle-to-farm-gate, and the functional unit was considered as one tonne of olives. The results indicated that the semi-mechanized system demonstrated better environmental performance compared to the traditional system, with a 31% reduction in global warming potential (from 1286.11 to 888.66 kg CO2 eq.), a 23% reduction in energy consumption (from 14399.73 to 11094.61 MJ), and a 38% reduction in human toxicity (from 553.40 to 344.54 kg 1,4-DB eq.). Input contribution analysis revealed that electricity (58 to 74 percent) and chemical fertilizers (15 to 20 percent) had the most significant impact on the environmental burden. However, diesel fuel consumption in the semi-mechanized system, due to partial mechanization, led to a 20% increase in ozone layer depletion. This study suggests that improving irrigation efficiency and managing fertilizer consumption can enhance the environmental sustainability of olive production in both systems.

کلیدواژه‌ها [English]

  • Energy Consumption
  • Greenhouse Gas Emissions
  • Human Toxicity
  • Mechanization
  • Sustainability

EXTENDED ABSTRACT

Objective

The primary objective of this study was to evaluate and compare the environmental impacts of traditional and semi-mechanized olive production systems in the Tarom region of Zanjan Province, Iran, using the Life Cycle Assessment (LCA) methodology. With Iran’s olive sector transitioning from traditional to semi-mechanized practices, this research aimed to quantify the environmental consequences of these systems, focusing on key impact categories such as global warming potential, energy consumption, and human toxicity. By identifying critical sources of environmental burden, the study sought to provide actionable recommendations to enhance the sustainability of olive production, supporting Iran’s agricultural sector in aligning with global environmental standards and promoting sustainable farming practices.

Methods

The study was conducted in 2022 in Tarom, Zanjan Province, a key olive-producing region characterized by a hot, semi-arid Mediterranean climate. Data were collected from 50 olive growers through structured questionnaires and supplemented by interviews with local agricultural managers. A simple random sampling method was employed, with the sample size determined using Cochran’s formula at a 95% confidence level and 5% margin of error. The LCA was performed following ISO 14040 and ISO 14044 standards, with the system boundary defined as cradle-to-farm-gate and the functional unit set as one ton of olive fruit. Two production scenarios were analyzed: traditional, small-scale farming reliant on manual labor, and semi-mechanized, larger-scale farming incorporating mechanized tools such as tractor-mounted sprayers and drip irrigation systems. The Life Cycle Inventory (LCI) included inputs (e.g., water, electricity, diesel, fertilizers) and outputs (e.g., emissions to air, water, and soil). Environmental impacts were assessed using the SimaPro 9.3.0.3 software with the CML-IA Baseline method, covering 11 impact categories, including global warming potential (GWP), energy use, human toxicity, and ozone layer depletion. Emission calculations followed IPCC (2006) guidelines, and data were sourced from databases such as ecoinvent 3.5 and Agri-footprint 4.0. The contribution of inputs and processes to environmental impacts was analyzed to identify key drivers of environmental burden.

Findings

The results revealed that the semi-mechanized system outperformed the traditional system across most environmental impact categories. Specifically, the semi-mechanized system reduced global warming potential by 31% (from 1286.11 to 888.66 kg CO2 equivalent per ton of olives), energy consumption by 23% (from 14399.73 to 11094.61 MJ), and human toxicity by 38% (from 553.40 to 344.54 kg 1,4-DB equivalent). These improvements were attributed to higher efficiency in water and energy use, as well as increased yields (4268.69 kg/ha in semi-mechanized vs. 2548.51 kg/ha in traditional systems). However, the semi-mechanized system showed a 20% increase in ozone layer depletion due to higher diesel fuel consumption associated with partial mechanization. Electricity consumption, primarily for water pumping, contributed 58–74% to the overall environmental burden, while chemical fertilizers accounted for 15–20%. In the traditional system, higher water and electricity use stemmed from less efficient flood irrigation, whereas the semi-mechanized system’s drip irrigation reduced resource consumption. In-field emissions, particularly from fertilizer use, were significant in both systems, with a higher contribution in the semi-mechanized system due to increased fertilizer application. The single-score analysis confirmed the semi-mechanized system’s lower environmental footprint (2.3 nPt vs. 3.9 nPt for the traditional system), driven by reduced impacts in aquatic and human toxicity. Comparative studies in regions like Spain, Portugal, and Turkey corroborated these findings, though Iran’s olive production exhibited higher environmental impacts, likely due to less efficient machinery and irrigation practices.

Conclusion

This study underscores the environmental advantages of semi-mechanized olive production over traditional methods in Tarom, Iran. Despite increased diesel use, the semi-mechanized system’s higher efficiency and yield led to significant reductions in key environmental impacts. Critical areas for improvement include optimizing electricity use for irrigation and managing fertilizer application to minimize emissions. Recommendations include adopting high-efficiency drip irrigation, integrating renewable energy sources like solar-powered pumps, and implementing soil testing for precise fertilizer use. These measures could further enhance the sustainability of olive production. Future research should incorporate economic and social dimensions to provide a holistic view of sustainable olive farming in Iran, supporting policymakers and farmers in developing environmentally sound agricultural practices.

Author Contributions

Conceptualization, M.N. and A.Y.; methodology, M.N. and B.M.; software, M.N.; validation, M.N., B.M. and A.Y.; formal analysis, M.N. and B.M.; investigation, M.N. and B.M.; resources, M.N.; data curation, M.N. and B.M.; writing-original draft preparation, M.N.; writing-review and editing, M.N.; visualization, M.N.; supervision, M.N. and A.Y; project administration, M.N. and A.Y.; funding acquisition, M.N., A.Y. and B. M.

All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Data available on request from the authors.

Acknowledgements

The authors gratefully acknowledge the support provided by the University of Zanjan, which contributed significantly to the completion of this study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Abeliotis, K., Detsis, V., & Pappia, C. (2013). Life cycle assessment of bean production in the Prespa National Park, Greece. Journal of Cleaner Production, 41, 89-96. https://doi.org/10.1016/j.jclepro.2012.09.032
Azimi, M., Zeinanloo, A. A. and Mostafavi, K. (2016). Evaluation of Compatibility and Morpho–Physiological Characteristics of Some Olive Cultivars (Oleaeuropaea L.) at Tarom Climate. Journal of Horticultural Science, 30(1), 19-34. (In Persian). https://doi.org/10.22067/jhorts4.v30i1.26236
Brito, T., & Fernandes-Silva, A. (2022). Life cycle assessment for olive production: A case study for the region of Trás-os-Montes, Portugal. Proceedings of the Latvian Academy of Sciences, 76 (4), 526–530. https://doi.org/10.2478/prolas-2022-0081
De Gennaro, B., Notarnicola, B., Roselli, L., & Tassielli, G. (2012). Innovative olive-growing models: an environmental and economic assessment. Journal of cleaner production, 28, 70-80. https://doi.org/10.1016/j.jclepro.2011.11.004
El Hanandeh, A., & Gharaibeh, M. A. (2016). Environmental efficiency of olive oil production by small and micro-scale farmers in northern Jordan: Life cycle assessment. Agricultural Systems, 148, 169-177. https://doi.org/10.1016/j.agsy.2016.08.003
Fan, J., Liu, C., Xie, J., Han, L., Zhang, C., Guo, D., Niu, J., Jin, H., & McConkey, B. G. (2022). Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges. International Journal of Environmental Research and Public Health, 19(16), 9817. https://doi.org/10.3390/ijerph19169817
FAO. 2025. Food and Agriculture Organization. Available from: www.fao.org
Fathollahi, H., Mousavi-Avval, S. H., Akram, A., & Rafiee, S. (2018). Comparative energy, economic and environmental analyses of forage production systems for dairy farming. Journal of Cleaner Production, 182, 852-862. https://doi.org/10.1016/j.jclepro.2018.02.073
Fernández-Lobato, L., García-Ruiz, R., Jurado, F., & Vera, D. (2021). Life cycle assessment, C footprint and carbon balance of virgin olive oils production from traditional and intensive olive groves in southern Spain. Journal of Environmental Management, 293, 112951. https://doi.org/10.1016/j.jenvman.2021.112951
Firouzi, S., & Bazyar, A. H. (2020). Environmental Life Cycle Assessment of Olive Fruit Production under Different Orchard Size and Upon Organic and Conventional Agro-Systems. International Journal of Agricultural Management and Development (IJAMAD), 10(3), 267-277. https://doi.org/10.22004/ag.econ.335131
Ghasemi-Mobtaker, H., Kaab, A., & Rafiee, S. (2020). Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran. Energy, 193, 116768. https://doi.org/10.1016/j.energy.2019.116768
Gkisakis, V. D., Volakakis, N., Kosmas, E., & Kabourakis, E. M. (2020). Developing a decision support tool for evaluating the environmental performance of olive production in terms of energy use and greenhouse gas emissions. Sustainable Production and Consumption, 24, 156-168. https://doi.org/10.1016/j.spc.2020.07.003
Hossein, H. Y., Azizpanah, A., Namdari, M., & Shirkhani, H. (2024). Environmental life cycle assessment of corn production in tropical regions. Scientific Reports, 14(1), 20036. https://doi.org/10.1038/s41598-024-70923-4
IPCC (2006) Guidelines for national greenhouse gas inventories. In: ggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.), Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan. <http://www.ipccnggip.iges.or.jp/public/2006gl/index.htm>
IRIMO, 2025. Iran Meteorological Organization. www.irimo.ir
ISO 14040, (2006). Environmental management — Life cycle assessment — Principles and framework. International Organization for Standardization, Geneva.
ISO 14044, (2006). Environmental management — Life cycle assessment — Requirements and guidelines. International Organization for Standardization, Geneva.
Khodarezaie, E., Veisi, H., Noori, O., Taheri, M. and Khoshbakht, K. (2017). Environmental impact assessment of olive production using Life Cycle Assessment: A case study, Tarom County, Zanjan province. Journal of Agroecology, 9(2), 458-474. (In Persian). https://doi.org/10.22067/jag.v9i2.46350
Khoshnevisan, B., Rajaeifar, M. A., Clark, S., Shamahirband, S., Anuar, N. B., Shuib, N. L. M., & Gani, A. (2014). Evaluation of traditional and consolidated rice farms in Guilan Province, Iran, using life cycle assessment and fuzzy modeling. Science of the Total Environment, 481, 242-251. https://doi.org/10.1016/j.scitotenv.2014.02.052
MAJ, (2025). Ministry of Agriculture Jihad of Iran. Available from: www.maj.ir
Martin-Gorriz, B., Gallego-Elvira, B., Martínez-Alvarez, V., & Maestre-Valero, J. F. (2020). Life cycle assessment of fruit and vegetable production in the Region of Murcia (south-east Spain) and evaluation of impact mitigation practices. Journal of Cleaner Production, 265, 121656. https://doi.org/10.1016/j.jclepro.2020.121656
Mohamad, R. S., Verrastro, V., Cardone, G., Bteich, M. R., Favia, M., Moretti, M., & Roma, R. (2014). Optimization of organic and conventional olive agricultural practices from a Life Cycle Assessment and Life Cycle Costing perspectives. Journal of Cleaner Production, 70, 78-89. https://doi.org/10.1016/j.jclepro.2014.02.033
Naderi, S., Raini, M. G. N., & Taki, M. (2020). Measuring the energy and environmental indices for apple (production and storage) by life cycle assessment (case study: Semirom county, Isfahan, Iran). Environmental and sustainability indicators, 6, 100034. https://doi.org/10.1016/j.indic.2020.100034
Namdari, M., Rafiee, S., Notarnicola, B., Tassielli, G., Renzulli, P. A., & Hosseinpour, S. (2024). Use of LCA indicators to assess Iranian sugar production systems: Case study—Hamadan Province. Biomass Conversion and Biorefinery, 14(5), 6759-6772. https://doi.org/10.1007/s13399-022-02982-4
Pergola, M., Favia, M., Palese, A. M., Perretti, B., Xiloyannis, C., & Celano, G. (2013). Alternative management for olive orchards grown in semi-arid environments: An energy, economic and environmental analysis. Scientia Horticulturae, 162, 380-386. https://doi.org/10.1016/j.scienta.2013.08.031
Proietti, S., Sdringola, P., Desideri, U., Zepparelli, F., Brunori, A., Ilarioni, L., ... & Proietti, P. (2014). Carbon footprint of an olive tree grove. Applied Energy, 127, 115-124. https://doi.org/10.1016/j.apenergy.2014.04.019
Rahmani, A., Parashkoohi, M. G., & Zamani, D. M. (2022). Sustainability of environmental impacts and life cycle energy and economic analysis for different methods of grape and olive production. Energy Reports, 8, 2778-2792. https://doi.org/10.1016/j.egyr.2022.01.197
Rajaeifar, M. A., Akram, A., Ghobadian, B., Rafiee, S., & Heidari, M. D. (2014). Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran. Energy, 66, 139-149. https://doi.org/10.1016/j.energy.2013.12.059
Rajak, P., Ganguly, A., Nanda, S., Mandi, M., Ghanty, S., Das, K., ... & Sarkar, S. (2024). Toxic contaminants and their impacts on aquatic ecology and habitats. In Spatial Modeling of Environmental Pollution and Ecological Risk (pp. 255-273). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-95282-8.00040-7
Rapa, M., & Ciano, S. (2022). A Review on Life Cycle Assessment of the Olive Oil Production. Sustainability, 14(2), 654. https://doi.org/10.3390/su14020654
Romero-Gámez, M., Castro-Rodríguez, J., & Suárez-Rey, E. M. (2017). Optimization of olive growing practices in Spain from a life cycle assessment perspective. Journal of Cleaner Production, 149, 25-37. https://doi.org/10.1016/j.jclepro.2017.02.071
Ruiz-Carrasco, B., Fernández-Lobato, L., López-Sánchez, Y., & Vera, D. (2023). Life cycle assessment of olive oil production in turkey, a territory with an intensive production project. Agriculture, 13(6), 1192. https://doi.org/10.3390/agriculture13061192
Russo, C., Cappelletti, G. M., Nicoletti, G. M., Di Noia, A. E., & Michalopoulos, G. (2016). Comparison of European Olive Production Systems. Sustainability, 8(8), 825. https://doi.org/10.3390/su8080825
Saidi, K., Namdari, M, & Yousefi, A. (2025). Comparative Analysis of Conventional and MFCA Methods for Assessing Energy and Economic Efficiency of Tomato Production in Nahavand County, Iranian Journal of Biosystem Engineering, 55(4), 45-62. (In Persian) https://doi.org/10.22059/ijbse.2025.388967.665582
Sales, H., Figueiredo, F., Patto, M. C. V., & Nunes, J. (2022). Assessing the environmental sustainability of Portuguese olive growing practices from a life cycle assessment perspective. Journal of Cleaner Production, 355, 131692. https://doi.org/10.1016/j.jclepro.2022.131692
Salomone, R., & Ioppolo, G. (2012). Environmental impacts of olive oil production: A Life Cycle Assessment case study in the province of Messina (Sicily). Journal of cleaner production, 28, 88-100. https://doi.org/10.1016/j.jclepro.2011.10.004
Shahmohammadi, A. , Veisi, H. , khoshbakht, K. , Mahdavi Damghani, A. and Soltani, E. (2017). Life Cycle Assessment of potato production semi-mechanized method in Iran: A Case Study of Markazi Province. Iranian Journal of Biosystems Engineering, 47(4), 666-659.  (In Persian) https://doi.org/10.22059/ijbse.2017.60260