مدل‌سازی رفتار دینامیکی تراکتور حین مانور روی شیب‌های ترکیبی جهت شناسایی لحظة واژگونی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی ماشین‌ّهای کشاورزی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران

2 گروه مهندسی ماشین‌های کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران.

10.22059/ijbse.2025.401891.665613

چکیده

تراکتورها در صنعت کشاورزی نقشی حیاتی دارند و باتوجه‌به خصوصیات ذاتی و شرایط عملیاتی، بروز سوانح ناشی از واژگونی آن‌ها، محتمل است. باوجود پژوهش‌های متعدد در جهت پیش‌گیری و کاهش خسارات ناشی از واژگونی، طبق آمار، این‌گونه سوانح سالانه هزاران کشته و زخمی بر جای می‌گذارد و البته متأسفانه آمار سوانح مذکور همچنان روبه‌افزایش است.در این پژوهش به مدل‌سازی ریاضی پدیدۀ واژگونی تراکتور از دو منظر عددی و تحلیلی و مقایسۀ عملکرد این روش‌ها در پیش‌بینی پایداری جانبی و طولی پرداخته شده است. مدل عددی با استفاده از روش سطح پاسخ توسعه داده شد و نتایج هر دو در مقایسه با داده‌های به‌دست‌آمده از یک مدل کوچک‌شدة جایگزین تراکتور، اعتبارسنجی شدند. همچنین تحلیل حساسیت به‌منظور تعیین سهم نسبی هر متغیر انجام شد. در تحقیق حاضر، اثر زاویة جانبی و طولی، موقعیت گرانیگاه، سرعت، شتاب و شعاع دوران بر پایداری تراکتور به‌صورت مدل ریاضی استخراج شد. نتایج نشان داد مجذور سینوس زاویۀ جانبی با ضریب ۲۴/۰ بیشترین تأثیر را بر پایداری جانبی و مجذور سینوس زاویۀ طولی با ضریب 21/0  بیشترین تأثیر را بر پایداری طولی دارد. در مدل تحلیلی اثر متقابلی بین شیب‌های جانبی و طولی وجود دارد؛ ولیکن نتایج مدل عددی نشان داد که این اثر معنا‌دار نیست. ضریب تعیین (R²) مدل‌سازی پایداری جانبی و طولی به ترتیب در مدل تحلیلی ۹۳/۹۶ و ۵۹/۹۱، مدل عددی ۷۵/۹۳ و ۸۱/۹۸ و مدل عددی تکمیلی 31/65 و 16/81 درصد محاسبه شدند. در بخش بهینه‌سازی، اثر تمامی متغیرها جهت تشخیص پایداری کلی تراکتور تحلیل شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling of tractor dynamic behavior during maneuvering on compound slopes for identifying the onset of rollover

نویسندگان [English]

  • Mohammad Rasoul Shabani Shadiani 1
  • Ali Jafari 2
  • Ali Hajiahmad 2
  • Seyed Saeid Mohtasebi 2
1 Department of Agricultural Machinery Engineering, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
2 Department of Agricultural Machinery Engineering, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
چکیده [English]

Tractors play a vital role in the agricultural industry, and due to their inherent characteristics and operational conditions, rollover accidents are a probable occurrence. Despite numerous studies aimed at preventing and reducing the consequences of rollover, statistics show that this accident leads to thousands of fatalities and injuries each year—a trend that continues to rise. This study modelled the tractor stability using both numerical and analytical methods, and the performance of these approaches in predicting lateral and longitudinal stability was compared. The numerical models were developed using the Response Surface Methodology, and both models were validated by comparing them to the experimental data obtained from a scaled-down tractor prototype. In addition, sensitivity analysis was conducted to determine the relative contribution of each variable. This study mathematically modelled the influence of lateral and longitudinal slope angles, center-of-gravity position, speed, acceleration, and turning radius on tractor stability. Results indicated that the squared sine of the lateral slope angle (coefficient of 0.24) most strongly governed lateral stability, while the squared sine of the longitudinal slope angle (0.21) was the principal factor affecting longitudinal stability. Despite the analytical model considering the interaction between lateral and longitudinal slopes, the numerical results indicated that the interaction was not statistically significant. The coefficients of determination (R²) for lateral and longitudinal stability were 96.93% and 91.59% for the analytical model, 93.75% and 98.81% for the numerical model, and 65.31% and 81.16% for the advanced numerical model, respectively. The optimization framework integrated all relationships to evaluate overall stability.

کلیدواژه‌ها [English]

  • Mathematical Model
  • Response Surface Method (RSM)
  • Rollover
  • Stability

 

EXTENDED ABSTRACT

Introduction

Tractors play a crucial role in modern agriculture, yet their inherent design poses significant rollover risks, causing thousands of fatalities annually. While Roll-Over Protective Structures (ROPS) remain a key safety measure, emerging technologies—such as active steering and momentum control—offer effective complements. Unlike most previous works emphasizing practical solutions, this study provides a theoretical and comparative analysis of prevention mechanisms. To reduce the high cost of physical testing, scaled-down prototypes and computer simulations were employed.

Methodology

This study enhances tractor safety through mathematical modelling of rollover dynamics using analytical and numerical approaches.

The numerical model applied Response Surface Methodology (RSM) in Design-Expert software to develop an optimized quadratic model, while the analytical model employed Newton’s laws and D’Alembert’s principle to describe forces under static and dynamic conditions.

A coordinate system consistent with the tractor geometry allowed direct sensor integration for parameter measurement. Key parameters reflected the goal of retrofitting older tractors with preventive systems.

Experimental Validation

scaled-down tractor prototype was designed and fabricated with:

Dual-axis tilt capability

Adjustable centre-of-gravity

High-precision sensors, including:

Four wheel load cells (0.1 N resolution)

A dual-axis inclinometer (0.1° resolution)

Model Evaluation & Development

Initial Validation

Model outputs were compared with prototype test data using  coefficients.

Combined longitudinal and lateral stability metrics were analysed using the desirability function.

Advanced Model Synthesis

comprehensive numerical model was developed to overcome prototype limitations by:

Incorporating analytical model data

Adding key dynamic parameters (acceleration, velocity, and turning radius) absent in the earliest numerical model

Sensitivity Analysis

Parameter significance was quantified to guide the design of preventive safety systems.

Theoretical Contribution

The finalized model provides a theoretical framework for developing next-generation rollover prevention systems.

Results

Tractor stability on compound slopes was analysed using analytical (Newton’s law, D’Alembert’s principle) and numerical RSM models based on 35 runs. Both showed strong concordance, with R² values of 93.75/98.81% (numerical) and 91.59/96.93% (analytical) for lateral and longitudinal stability.

The sensitivity analysis based on normalized RSM coefficients revealed that lateral stability was most affected by the squared lateral slope (0.206), followed by the CoG height (0.020). This indicates that slope steepness has nearly tenfold the effect of CoG height (0.206 vs 0.020). For longitudinal stability, the squared longitudinal slope (0.185) and slope–position coupling term (0.177) showed dominant contributions, both considerably exceeding the effect of the squared longitudinal CoG position (0.087) and CoG height (0.023).

Notably, the Advanced numerical model uncovered additional complexity in lateral stability behavior, with quadratic lateral CoG position emerging as a critical factor and slope-angle terms appearing in multiple interaction components. These findings fundamentally reorient rollover prevention strategies, emphasizing that while longitudinal stability depends overwhelmingly on CoG positioning, lateral stability requires balanced consideration of both geometric and operational parameters. The models' strong agreement (all R²> 90%) despite differing methodologies underscores their reliability for safety system design.

Conclusions

This study developed analytical and numerical models to assess tractor rollover stability, achieving R² values of 96.93%/91.59% (analytical) and 93.75%/98.81% (numerical). Sensitivity analysis revealed that stability was most affected by sin² (slope). An advanced model showed excellent theoretical fit (R² 99.93%/99.17%) but reduced accuracy (R² 65.31%/81.17%) when validated with prototype data, likely due to limited experimental parameter ranges. These findings provide a framework for stability system design, though real-world calibration is proposed to address observed deviations.

Author Contributions

M.R. Shabani: Conceptualization, Methodology, Investigation, Formal Analysis, Data Curation, Writing - Original Draft

  1. Jafari: Supervision, Project Administration, Validation, Writing-Review & Editing
  2. Hajiahmad: Resources (experimental apparatus), Methodology, Validation, Writing-Review & Editing

S.S. Mohtasebi: Writing-Review & Editing, General Advisory

All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Data available on request from the authors.

Acknowledgements

This research was conducted as part of the approved project No. 8929743 by the Vice Presidency for Research and Technology, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran. We sincerely appreciate their financial and scholarly support. Additionally, we would like to express our appreciation to the Department of Agricultural Machinery Engineering, College of Agriculture and Natural Resources, University of Tehran, for providing us with essential technical and workshop facilities.

Ethical considerations

This study did not involve human or animal subjects, experimental procedures, or sensitive data; consequently, ethical approval was deemed unnecessary. The authors upheld the standards of academic integrity throughout the conduct and reporting of this research

Conflict of interest

The author declares no conflict of interest.

Cavallo, E., Gorucu, S., & Murphy, D. (2014). A Simulator to Improve Awareness of Rollover Risk and Stimulate Safer Driving Behavior Among Young All-Terrain (ATV) Drivers. Journal of agromedicine, 19, 208. https://doi.org/10.1080/1059924X.2014.889619
Dowdy, S., Wearden, S., & Chilko, D. (2011). Statistics for research. John Wiley & Sons.
Franceschetti, B., Rondelli, V., & Ciuffoli, A. (2019). Comparing the influence of Roll-Over Protective Structure type on tractor lateral stability. Safety Science, 115, 42-50. https://doi.org/https://doi.org/10.1016/j.ssci.2019.01.028
Heydari, M.S. (2020). Design and fabrication of a tractor lateral balance system on sloping lands, (Master’s thesis, University of Tehran). (In Persian)
Houshyar, E., & Houshyar, M. (2018). Tractor safety and related injuries in Iranian farms. Safety Science, 103, 88-93.
Jang, M. K., Hwang, S. J., & Nam, J. S. (2022). Simulation Study for Overturning and Rollover Characteristics of a Tractor with an Implement on a Hard Surface. Agronomy, 12(12), 3093.
Li, X., Wang, G., Yao, Z., & Qu, J. (2013). Dynamic model and validation of an articulated steering wheel loader on slopes and over obstacles. Vehicle System Dynamics, 51(9), 1305-1323.
Majdan, R., Abrahám, R., Tkáč, Z., Drlička, R., Matejková, E., Kollárová, K., & Mareček, J. (2021). Static Lateral Stability of Tractor with Rear Wheel Ballast Weights: Comparison of ISO 16231-2 (2015) with Experimental Data Regarding Tyre Deformation. Applied Sciences11(1), 381. https://doi.org/10.3390/app11010381
McKenzie, E., Ronaghi, M., Powers, J., & Lutz, T. (2007). Implementing and Developing Industry Standards in the Design of Agricultural Safety Systems. ASSE Professional Development Conference,
Murphy, D. J. (2014). Tractor Stability and Instability. PennState Extension.
Nichol, C. I., Sommer III, H. J., & Murphy, D. J. (2005). Simplified overturn stability monitoring of agricultural tractors. Journal of agricultural safety and health, 11(1), 99-108.
Ochoa Lleras, N., Brennan, S., Murphy, D., Klena, J., Garvey, P., & Sommer, H. (2017). Assessing Perceptions and Alerts of Tractor Instability. Chemical Engineering Transactions, 58, 7-12.          
Qin, J., Liu, H., Suh, C. S., Li, Z., Zhu, Z., & Wang, G. (2020). Tractor Active Anti-rollover Control Using Momentum Flywheel with Experimental Verification. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 51, 515-520. https://doi.org/10.6041/j.issn.1000-1298.2020.S2.064
Qin, J., Wu, A., Song, Z., He, Z., Suh, C. S., Zhu, Z., & Li, Z. (2021). Recovering tractor stability from an intensive rollover with a momentum flywheel and active steering: System formulation and scale-model verification. Computers and Electronics in Agriculture, 190, 106458.  https://doi.org/https://doi.org/10.1016/j.compag.2021.106458
Qin, J., Zhu, Z., Ji, H., Zhu, Z., Li, Z., Du, Y.,…Mao, E. (2019). Simulation of active steering control for the prevention of tractor dynamic rollover on random road surfaces. Biosystems Engineering, 185, 135-149.
Ribeiro, A. M., Koyama, M. F., Moutinho, A., de Paiva, E. C., & Fioravanti, A. R. (2021). A comprehensive experimental validation of a scaled car-like vehicle: Lateral dynamics identification, stability analysis, and control application. Control Engineering Practice, 116, 104924.  https://doi.org/https://doi.org/10.1016/j.conengprac.2021.104924
Shetty, G., Hossain, S., Hu, C., & Lin, X. (2022). Road slope prediction and vehicle dynamics control for autonomous vehicles. arXiv preprint arXiv:2210.05741.‏
Soleimani, A., Abbaspour-Fard, M., & Rohani, A. (2022). Development of a combined fuzzy/PID controller for determining the required force for tractor stability in side slopes. Journal of Research in Mechanics of Agricultural Machinery, 11(3), 1-14. https://doi.org/10.22034/JRMAM.2022.13790.581. (In Persian)
Tarighi, J., & Mohtasebi, S. S. (2021). Design, fabrication and evaluation a new mechanism to automatic weight transfer control system on a tractor. Emirates Journal for Engineering Research, 26(2), 2.
Tarighi, J., Khorasani, E., Mousazadeh, H. (2018). Design, Fabrication and evaluation an alarm System to Prevent Tractor Overturning. Eleventh National Congress on Mechanical Engineering, Biomaterials and Mechanization of Iran. (In Persian)   
Togaev, A., & Shermukhamedov, A. (2023). Tractor Rollover Accidents: A Review of Factors and Safety Measures. E3S Web of Conferences. 449. 10.1051/e3sconf/202344909011.
van Zanten, A. T., Erhardt, R., & Pfaff, G. (1995). VDC, The Vehicle Dynamics Control System of Bosch. SAE Transactions, 104, 1419-1436.
Wang, D., & Yuan, H. (2025). Data-driven tube model predictive control of autonomous agricultural tractors for cross-slope navigation. Smart Agricultural Technology, 10, 100844. https://doi.org/https://doi.org/10.1016/j.atech.202, 5.100844
Wang, L., Liu, F., Song, Z., Ni, Y., He, Z., Zhai, Z., … Li, Z. (2024). Advances in tractor rollover and stability control: Implications for off-road driving safety. Computers and Electronics in Agriculture, 226, 109483. https://doi.org/https://doi.org/10.1016/j.compag.2024.109483
Watanabe, M., & Sakai, K. (2021). Identifying tractor overturning scenarios using a driving simulator with a motion system. Biosystems Engineering, 210, 261-270.      https://doi.org/https://doi.org/10.1016/j.biosystemseng.2 021/08/010.
Zhang, Z., Zhu, Z., Han, B., Lu, L., Yang, H., Song, Z., … Yang, Z. (2025). Enhancing stability and driving efficiency in tractor plowing operations on lateral slopes through independent braking and electronic Limited-Slip Differential: A Multi-Layer control strategy based on Multi-Channel time series prediction. Computers and Electronics in Agriculture, 234, 110298.