استخراج مؤثرترین طول موج‏های طیف تخم‏مرغ با استفاده از الگوریتم ژنتیک و طبقه‏بندی آن‏ها با روابط رگرسیونی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه رامین خوزستان

2 دانشگاه تربیت مدرس

3 دانشگاه شهید بهشتی تهران

چکیده

پتانسیل روش طیف‏سنجی عبوری (1100-nm200) به‏منظور ارزیابی کیفیت داخلی (تازگی) تخم‏مرغ سالم و دست‏نخورده در طول انبارداری در دمای  oC730 و رطوبت 425درصد بررسی شد. تعداد یک‏صد تخم‏مرغ برای اندازه‏گیری تازگی و جمع‏آوری طیف در طول زمان ذخیره‏سازی (تا 30 روز) استفاده شدند. دو مدل رگرسیونی میانHU   [1] و ضریب زرده (YC[2]) نسبت به زمان ذخیره‏سازی به ترتیب با ضریب همبستگی 86/0و 96/0 توسعه داده شد. معادلات ذکرشده حاکی از افت شدید کیفیت تخم‏مرغ در خلال نگهداری در این شرایط است. علاوه بر این، روشی برای به‏دست‏آوردن ویژگی‏های طول موج براساس الگوریتم‏های ژنتیکی شرح و بسط داده شد. این روش توانایی حل مشکل استخراج مؤثرترین اطلاعات از ماتریس داده‏های ابعدی بالا[3] را دارد. معادلات رگرسیونی با داده‏های خام و ویژگی‏های استخراج‏شده با الگوریتم‏ ژنتیک، با پردازش‏های گوناگون (SNV، MSC، FFT، و همچنین مشتقات اول و دوم)، به‏دست آمد. نتایج نشان داد که معادلات رگرسیونی براساس الگوریتم‏ ژنتیک و پردازش SNV و MSC می‏تواند طیف‏ها را در سه گروه طبقه‏بندی کند در حالی‏که با یکبار مشتق‏گیری، هر طیف روزانه می‏تواند در گروهی مجزا قرار گیرد.



[1] .Haugh unit


[2] .Yolk Coefficient


[3]. High Dimensional Data

کلیدواژه‌ها


عنوان مقاله [English]

Extraction of most effective wavelength of egg spectra using genetic algorithm and classifying using regression equations

چکیده [English]

The potential of Vis-IR (400–1100 nm) transmittance method to assess the internal quality (freshness) of intact chicken egg during storage at a temperature of 307 oC and 25% 4 relative humidity was investigated. One hundred chicken egg samples were used for measuring its freshness and spectral collection during egg storage times (up to 30 days). Two correlation models between Haugh unit (HU) and the yolk coefficient (YC) versus the storage time were developed with the correlation coefficients of 0.86, 0.96, respectively. The latter equations showed in that aforementioned conditions egg quality decreased dramatically. Furthermore, the method has developed to acquire the wavelength features based on genetic algorithm (GA). It can solve the problem of the effective information extraction from the high-dimensional data matrix. Regression equations were developed by raw and according to the wavelength features were acquired, respectively basing on different preprocessing (SNV, MSC, FFT, as well as 1st and 2nd derivations). The result indicated that regression equations based on GA and preprocessing SNV and MSC could classify egg’s spectra in three groups while by 1st derivation preprocessing, each daily spectrum could allocate each of them into separated groups.

کلیدواژه‌ها [English]

  • egg quality
  • Regression equation
  • Genetic Algorithm
Abdanan Mehdizadeh S., Minaei, S., Karimi Torshizi M. A. & Mohajerani, E.                                                               (2014).Effect of UV irradiation, sample thickness and storage temperature on storability, bacterial activity and functional properties of liquid egg. International Journal of Food Technology, 1-9.
 Aboonajmi m.,Akram A., Setarehdan S.K., & Rajabipour A. (2009).  Freshness assessment of poultry egg by ultrasound signal processing.  iranian journal of biomedical engineering, 3(1), 55-66.

Aghkhani, M. H., & Poureza, A. R. (2007). Egg grading using machine vision techniques. Agricultural Engineering Research, 8(3), 141-150.

Anonymous. (2014). I.R. of Iranian Metrological Organization, http://www.irimo.ir/far/.
AOAC (1996). Official methods of analysis. Washington, DC: Association of Official Analytical Chemists. 
Bamelis, F. (2003). Non invasive assessment of eggshell conductance and different developmental stages during incubation of eggs. PhD thesis, No. 587, FLTWB, KU Leuven.
Cho, H. K., Choi, W. K., & Paek, J. H. (2000). Inspection of surface cracks in shell eggs by acoustic impulse method. Transactions of the ASAE, 43(6), 1921–1926.
Dhanoa, M. S., Lister, S. J., Sanderson, R., & Barnes, R. J. (1994). The link between Multiplicative Scatter Correction (MSC) and Standard Normal Variate (SNV) transformations of NIR spectra. Journal of Near Infrared Spectroscopy, 2, 43-47.
Dehrouyeh, M. H., Omid, M., Ahmadi, H., Mohtasebi, S. S., & Jamzad, M. (2010). Grading and quality inspection of defected eggs using machine vision.International Journal of Advanced Science and Technology, 17, 23-31.
Demtröder, W. (2008). Laser Spectroscopy 4st edn. Springer-Verlag Berlin Heidelberg.
Dutta, R.,  Hines, E. L., Gardner J. W., Udrea, D. D, & Boilot, P. (2003). Non-destructive egg freshness determination: an electronic nose based approach. Measurement Science Technology, 14, 190–198.
Heath, J. L. (1975). Investigation of Changes in Yolk Moisture. Poultry Science,  54, 2007–2014.
Karoui, R., Kemps, B., Bamelis, F., De Ketelaere, B., Mertens, K., Schoonheydt, R., Decuypere, E., & Baerdemaeker, J. D. (2006a). Development of a rapid method based on front face fluorescence spectroscopy for the monitoring of egg freshness: 1-evolution of thick and thin albumens. European Food Research and Technology, 223, 303–312.
Karoui, R., Kemps, B., Bamelis, F., De Ketelaere, B., Mertens, K., Schoonheydt, R., Decuypere, E., &  De Baerdemaeker, J. (2006b). Development of a rapid method based on front face fluorescence spectroscopy for the monitoring of egg freshness: 2-evolution of yolk. European Food Research and Technology, 223, 180–188.
Karoui, R., Schoonheydt, R., Decuypere, E., Nicolaï, B., & De Baerdemaeker, J. (2007). Front face fluorescence spectroscopy as a tool for the assessment of egg freshness during storage at a temperature of 12.2 °C and 87% relative humidity. Analytica Chimica Acta, 582, 83–91.
Kemps, B., Bamelis, F., De Ketelaere, B., Mertens, K., Tona, K., Decuypere, E., G De Baerdemaeker, J. (2006). Visible transmission spectroscopy for the assessment of egg freshness. Journal of the Science of Food and Agriculture, 86, 1399–1406.
Lastinger, A.W., & McLendon, B.D. (1976). Inspection of light transmission as a measure of egg fertility. ASAE Paper. No: 76- 3032.
Lin, J., Lin, Y., Hsieh, M., & Yang, C., (2001). An automatic system for eggshell quality monitoring. ASAE Paper Number: 01-6032 Joseph, Mich.: ASAE.
Liu, Y., Ying, Y., Ouyang, A., & Li, Y. (2007). Measurement of internal quality in chicken eggs using visible transmittance spectroscopy technology. Food Control, 18, 18–22.
Miller, J. N., &Miller, J. C. (2005). Statistics and Chemometrics for analytical chemistry. Pearson Education Limited. UK. Pp:268.
Osborne, B.G., Fearn, T., & Hindle, P. H. (1993).Near infrared calibration II. In”Practical NIR spectroscopy with applications in food and beverage analysis”. (David Browning ed.). Harlow: Longman Scientific and Technical.
Schwagele, F., Poser, R., & Krockel, L. (2001).  Application of low-resolution NMR spectroscopy of intact eggs – measurement of quality determining physical characteristics, Fleischwirtschaft, 81, 103–106
Weeks, M. (2007). Digital signal processing using MATLAB and Wavelets. Infinity Science Press LLC. 
Ye, S. F., Wang, D., & Min, S.G. (2008). Successive projections algorithm combined with uninformative variable elimination for spectral variable selection, Chemometrics and Intelligent Laboratory Systems, 91, 194-199.