ارزیابی و مدلسازی جریان انرژی و اثرات زیست‌محیطی تولید کلوچه با رویکرد ارزیابی چرخه زندگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تهران

2 هیئت علمی دانشگاه تهران

3 گروه مهندسی ماشین‌های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

4 گروه مهندسی ماشین های کشاورزی،دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

چکیده

در این تحقیق، مصرف انرژی و انتشار آلاینده­های زیست­محیطی تولید کلوچه در استان گیلان مورد بررسی قرار گرفت. داده­های لازم از طریق پرسش­نامه و مصاحبه­ حضوری از 30 کارخانه تولید کلوچه جمع­آوری شد. نتایج این پژوهش نشان داد که مقدار 50/30 مگاژول انرژی برای تولید هر کیلوگرم کلوچه مصرف شده­ است که بیشترین سهم انرژی مصرفی به گاز طبیعی با 09/17 مگاژول بر کیلوگرم اختصاص داشت. بر­اساس نتایج ارزیابی چرخه زندگی، شاخص گرمایش جهانی برای تولید هر کیلوگرم کلوچه kg CO2 eq. 73/3 تعیین گردید که در حدود 51 درصد آن مربوط به احتراق گاز طبیعی جهت فرآیند پخت است. در نهایت، مدل­سازی میزان عملکرد و اثرات زیست­محیطی بر­اساس دو مدل شبکه­های عصبی مصنوعی و سامانه استنتاج فازی- عصبی تطبیقی (انفیس) انجام شد. مقایسه نتایج نشان داد مدل انفیس چند لایه قادر است تا با دقت بیشتر و خطای کمتر عملکرد محصول را برآورد کند.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment and modeling of energy flow and environmental impacts of cookie production by life cycle assessment approach

نویسندگان [English]

  • Majid Khanali 1
  • Asadollah Akram 2
  • Mahdieh Mohammadnia Galeshklamei 3
  • homa hosseinzadeh-bandbafha 4
1 University of Tehran
2 Faculty of Tehran University
3 Department of Agricultural Engineering, Faculty of Engineering and Technology, College of Agriculture and Natural Resources, Tehran University
4 Department of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, Tehran University
چکیده [English]

In this study, energy consumption and environmental emissions of cookie production in Guilan Province of Iran was investigated. The required information was collected using questionnaires and interviews from 30 factories of cookie production. Equivalent energies of inputs and outputs were calculated based on the standardized energy coefficients. The results of this study showed that 30.50 MJ of energy was consumed for production of one kilogram of cookie in which the highest share of energy consumption was allocated to natural gas with 17.09 MJ kg-1. Based on life cycle assessment (LCA) results, global warming (GW) index was calculated as 3.73 kg CO2 eq. per kilogram of produced cookie which about 51 percent of that was related to combustion of natural gas consumed in cooking process. Finally, the modeling of amount of yield and environmental impacts was conducted based on two models of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). The results showed that ANFIS was capable of predicting yield with more accuracy and less error.

کلیدواژه‌ها [English]

  • Life Cycle Assessment
  • Energy
  • environmental indicators
  • Cookie
  • modeling
Abolshikhi, M. (2014). Study of life cycle of bread production - Case Study: Ray County, Tehran.  M. Sc. Thesis. University of Tehran, Iran. (In Persian with English abstract).
Andersson, K., & Ohlsson, T. (1999). Life cycle assessment of bread produced on different scales. The International Journal of Life Cycle Assessment, 4(1), 25-40.
Banaeian, N., Zangeneh, M., & Omid, M. (2010). Energy use efficiency for walnut producers using data envelopment analysis (DEA). Australian Journal of Crop Science4(5), 359-362.
Baum, A. W., Patzek, T., Bender, M., Renich, S., & Jackson, W. (2009). The visible, sustainable farm: A comprehensive energy analysis of a Midwestern farm. Critical reviews in plant sciences, 28(4), 218-239.
Bimpeh, M., Djokoto, E., Doe, H., & Jequier, R. (2006). Life Cycle Assessment (LCA) of the Production of Homemade and Industrial Bread in Sweden. KTH, Life Cycle Assessment Course (1N1800).
Braschkat, J., Patyk, A., Quirin, M., & Reinhardt, G. A. (2004). Life cycle assessment of bread production-a comparison of eight different scenarios. Proceedings from the 4th International Conference, 6-8 Oct., Bygholm, Denmark. pp. 7-16.
Canakci, M., Topakci, M., Akinci, I., & Ozmerzi, A. (2005). Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy conversion and Management, 46(4), 655-666.
Curran, M. A., Mann, M., & Norris, G. (2005). The international workshop on electricity data for life cycle inventories. Journal of Cleaner Production, 13(8), 853-862.
Ekici, B. B., & Aksoy, U. T. (2011). Prediction of building energy needs in early stage of design by using ANFIS. Expert Systems with Applications, 38(5), 5352-5358.
Erdal, G., Esengün, K., Erdal, H., & Gündüz, O. (2007). Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy, 32(1), 35-41.
Espinoza-Orias, N., Stichnothe, H., & Azapagic, A. (2011). The carbon footprint of bread. The International Journal of Life Cycle Assessment, 16(4), 351-365.
Geerken, T.H., Scholliers, D., De Vooght, C., Spirinckx, V., Van Holderbeke, M., Vercalsteren, A. (2006). Analysis of the 4 Cases 1/5. Case Study: Bread, Sustainability Developments of Product Systems, 1800-2000. The Belgian Science Policy. pp. 29-43.
Hosseinzadeh‐Bandbafha, H., Nabavi‐Pelesaraei, A., & Shamshirband, S. (2017). Investigations of energy consumption and greenhouse gas emissions of fattening farms using artificial intelligence methods. Environmental Progress & Sustainable Energy. http:// DOI: 1002/10/ep.12604.
ISO. (2006). Environmental Management- Life Cycle Assessment- Principles and Framework- ISO,14040. Geneva, Switzerland.
Karakaya, A., & Özilgen, M. (2011). Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes. Energy36(8), 5101-5110.
Khanali, M., Mobli, H., & Hosseinzadeh-Bandbafha, H. (2017). Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks. Environmental Science and Pollution Research, 1-17.
Khanna, T. (1990). Foundations of neural networks. Reading: Addison Wesley.
Kitani, O. (1999). CIGR handbook of agricultural engineering. Energy and biomass engineering, ASAE Publications, St Joseph, MI.
Kulak, M., Nemecek, T., Frossard, E., Chable, V., & Gaillard, G. (2015). Life cycle assessment of bread from several alternative food networks in Europe. Journal of Cleaner Production, 90, 104-113.
Mousazadeh, H., Keyhani, A., Javadi, A., Mobli, H., Abrinia, K., & Sharifi, A. (2011). Life-cycle assessment of a Solar Assist Plug-in Hybrid electric Tractor (SAPHT) in comparison with a conventional tractor. Energy conversion and Management, 52(3), 1700-1710.
Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., & Mobtaker, H. G. (2014). Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production, 65, 311-317.
Namdari, M. (2015). Optimization of sugar beet production using colonial competition algorithm and life cycle assessment of sugar production.  Ph. D. Thesis. University of Tehran, Iran. (In Persian with English abstract).
Notarnicola, B., Tassielli, G., Renzulli, P. A., & Monforti, F. (2017). Energy flows and greenhouses gases of EU (European Union) national breads using an LCA (Life Cycle Assessment) approach. Journal of Cleaner Production, 140, 455-469.
Omid, M., Akram, A., & Golmohammadi, A. (2011). Modeling thermal conductivity of Iranian flat bread using artificial neural networks. International journal of food properties, 14(4), 708-720.
Rahman, M. M., & Bala, B. K. (2010). Modelling of jute production using artificial neural networks. Biosystems Engineering, 105(3), 350-356.
Rezaei, E., Karami, A., Yousefi, T., & Mahmoudinezhad, S. (2012). Modeling the free convection heat transfer in a partitioned cavity using ANFIS. International Communications in Heat and Mass Transfer39(3), 470-475.
Sablani, S. S., Baik, O. D., & Marcotte, M. (2002). Neural networks for predicting thermal conductivity of bakery products. Journal of Food Engineering, 52(3), 299-304.
Sefeedpari, P., Rafiee, S., Akram, A., Chau, K. W., & Pishgar-Komleh, S. H. (2016). Prophesying egg production based on energy consumption using multi-layered adaptive neural fuzzy inference system approach. Computers and electronics in agriculture, 131, 10-19.