مطالعه تجربی و مدل سازی عددی جریان هوا در مخزن استوانه‌ای حاوی مواد متخلخل دانه‌ای با دو آرایش‌ مرسوم کانال‌های ورودی (H,F)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شیراز، ایران

2 بخش بیوسیتم، دانشکده کشاورزی، دانشگاه شیراز

3 دانشکده مهندسی مکانیک، بخش حرارت و سیالات

4 بخش مهندسی بیوسیستم دانشگاه شیراز

5 بخش مهندسی شیمی، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه شیراز، ایران

6 عضو هیات علمی دانشکده مهندسی مکانیک دانشگاه شیراز

چکیده

در این تحقیق افت فشار حاصل از هوادهی مخزن حاوی ذرت به عنوان ماده متخلخل دانه­ای در دو آرایش H و F کانال­های ورودی هوا برای یک سیلوی آزمایشگاهی با استفاده از روش تجربی مورد مطالعه قرار گرفت. برای آرایش F افت فشار بیشتری نسبت به آرایش H مشاهده گردید. نتایج تجربی با معادله ارگان برازش داده شد و ضرایب ثابت اصلاح کننده معادله ارگان برای هر دو آرایش H و F تعیین شد. میزان تطابق معادله ارگان با داده های تجربی با استفاده از شاخص­های آماری شامل ضریب تبیین، و درصد میانگین نسبی خطاها و مجذور میانگین مربعات خطاها مورد بررسی قرار گرفت که معادله ارگان با توجه به ضرایب اصلاح شده همخوانی خوبی با داده­های تجربی داشت. با استفاده از معادله اصلاح شده ارگان شبیه سازی عددی جریان در داخل بستر ذرت با روش المان محدود در نرم افزار کامسول ویرایش 3/5 انجام گرفت، همچنین توزیع سرعت و خطوط جریان در داخل بستر مخزن نیز ارائه شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental and Numerical Study of Gas Flow in Cylindrical Bin Containing Granular Porous Material with Two Common Duct Inlet Arrangements (H, F)

نویسندگان [English]

  • Kamran Maleki Majd 1
  • Dariush Zare 2
  • Emdad Homayoun 3
  • SAYED MEHDI NASIRI 4
  • Gholamreza Karimi 5
  • KHOSROW JAFARPUR 6
1 PhD Student, Department of Biosystems Engineering, Faculty of Agriculture, Shiraz University, Iran.
2 Biosystems Engineering Department, Faculty of Agriculture, Shiraz University, Shiraz, Iran.
3 Professor, Department of Fluid and Thermal Engineering, Faculty of Mechanical Engineering, Shiraz University, Iran
4 Department of Biosystems Engineering, Faculty of Agriculture, Shiraz University, Iran.
5 Department of Chemical Engineering, Faculty of Chemical, Petroleum and Gas Engineering, Shiraz University, Iran
6 Faculty of Mechanical Engineering, Shiraz University, Iran.
چکیده [English]

In this study pressure drop of bin containing corn as granular porous material with two common inlet duct arrangements (H, F) for a laboratory silage was studied by using experimental method. Higher pressure was obtained for the F arrangement compare to the H arrangement. The Ergun equation was fitted on the pressure drop of empirical data and the correction coefficients of modified Ergun equation for both H and F arrangements were determined. The coefficient of determination, mean root square error and mean relative error were used as indices to investigate the goodness of fitness between the empirical data and Ergun equation, and the equation had good fitness on the empirical data. The numerical simulation was carried out by finite element simulation of COMSOL Multiphysics v5.3 software using the modified Ergun equation. Moreover, distribution of velocity and flow lines within the bin was also presented.

کلیدواژه‌ها [English]

  • Bin Aeration
  • Numerical simulation
  • Granular Material
  • Duct inlet arrangement
Boyce, D., Davies, J., (1965). Air distribution from a lateral duct with different escape areas in barley. Journal of Agricultural Engineering Research 10, 230-234.
Brooker, D., (1961). Pressure patterns in grain-drying systems established by numerical methods. Transactions of the ASAE 4, 72-74.
Bunn, J., Hukill, W., (1963). Pressure pattern predictions for non-linear air flow through porous media. Transactions of the ASAE 6, 32-0036.
Civan, F., (2011). Porous media transport phenomena. John Wiley & Sons.
Ergun, S., Orning, A.A., (1949). Fluid Flowthrough Randomly Packed Columns and Fluidized Beds. Industrial & Engineering Chemistry 41, 1179-1184.
Hukill, W., Ives, N., (1955). Radial airflow resistance of grain. Agricultural Engineering 36, 332-335.
Khatchatourian, O., Binelo, M., (2008). Simulation ofthree-dimensional airflow in grain storage bins. Biosystems Engineering 101, 225-238.
Khatchatourian, O., Savicki, D., (2004). Mathematical modelling of airflow in an aerated soya bean store under non-uniform conditions. Biosystems Engineering 88, 201-211.
Lai, F., (1980). Three-dimensional flow of air through nonuniform grain beds. Transactions of the ASAE 23, 729-0734.
Lawrence, J., Maier, D.E., (2011). Three-dimensional airflow distribution in a maize silo with peaked, levelled and cored grain mass configurations. Biosystems Engineering 110, 321-329.
Łukaszuk, J., Molenda, M., Horabik, J., Montross, M.D., (2009). Variability of pressure drops in grain generated by kernel shape and bedding method. Journal of Stored Products Research 45, 112-118.
Molenda, M., Montross, M.D., McNeill, S.G., Horabik, J., (2005). Airflow resistance of seeds at different bulk densities using Ergun’s equation. Transactions of the ASAE 48, 1137-1145.
Olatunde, G., Atungulu, G.G., Sadaka, S., (2016). CFD modeling of air flow distributionin rice bin storage system with different grain mass configurations. Biosystems Engineering 151, 286-297.
Shedd, C.K., (1953). Resistance of grains and seeds to air flow. Agricultural Engineering 34, 616-619.
Singh, A., Leonardi, E., Thorpe, G., (1993). A solution procedure for the equations that govern three-dimensional free convection in bulk stored grains. Transactions of the ASAE 36, 1159-1173.
Smith, E., (1996). Pressure and velocity of air during drying and storage of cereal grains. Transport in porous media 23, 197-218.
Thorpe, G., Whitaker, S., (1992a). Local mass and thermal equilibria in ventilated grain bulks. Part I: The development of heat and mass coservation equations. Journal of stored products research 28, 15-27
Thorpe, G., Whitaker, S., (1992b) Local mass and thermal equilibria in ventilated grain bulks. Part II: The development of constraints. Journal of stored products research 28, 29-54
Vafai, K., (2015). Handbook of porous media. Crc Press