Abdullah, J., Ahmad, M., Heng, L. Y., Karuppiah, N., & Sidek, H. (2008). Evaluation of an optical phenolic biosensor signal employing artificial neural networks. Sensors and Actuators B: Chemical, 134(2), 959-965.
Akbari, E., Buntat, Z., Shahraki, E., Zeinalinezhad, A., & Nilashi, M. (2016). ANFIS modeling for bacteria detection based on GNR biosensor. Journal of Chemical Technology & Biotechnology, 91(6), 1728-1736.
Alonso, G. A., Istamboulie, G., Ramírez-García, A., Noguer, T., Marty, J. L., & Muñoz, R. (2010). Artificial neural network implementation in single low-cost chip for the detection of insecticides by modeling of screen-printed enzymatic sensors response. Computers and Electronics in Agriculture, 74(2), 223-229.
Alonso, G. A., Istamboulie, G., Noguer, T., Marty, J. L., & Muñoz, R. (2012). Rapid determination of pesticide mixtures using disposable biosensors based on genetically modified enzymes and artificial neural networks. Sensors and Actuators B: Chemical, 164(1), 22-28.
Azimzadeh, M., Rahaie, M., Nasirizadeh, N., Ashtari, K., & Naderi-Manesh, H. (2016). An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosensors and Bioelectronics, 77, 99-106.
Azimzadeh, M., Rahaie, M., Nasirizadeh, N., Daneshpour, M., & Naderi-Manesh, H. (2017). Electrochemical miRNA biosensors: the benefits of nanotechnology. Nanomedicine Research Journal, 2(1), 36-48.
Baronas, R., Ivanauskas, F., & Kulys, J. (2009). Mathematical modeling of biosensors: an introduction for chemists and mathematicians (Vol. 9). Springer Science & Business Media.
Bartlett, P. N., Toh, C. S., Calvo, E. J., & Flexer, V. (2008). Modelling biosensor responses (pp. 267-325). Wiley: Chichester, England.
Blaedel, W. J., Kissel, T. R., & Boguslaski, R. C. (1972). Kinetic behavior of enzymes immobilized in artificial membranes. Analytical Chemistry, 44(12), 2030-2037.
Eaimkhong, S. (2013). Application of Nanotechnology in Biological Research: Diagnostics and Physical Manipulation (Doctoral dissertation, UCLA).
Ferentinos, K. P., Yialouris, C. P., Blouchos, P., Moschopoulou, G., Tsourou, V., & Kintzios, S. (2012). The use of artificial neural networks as a component of a cell-based biosensor device for the detection of pesticides. Procedia Engineering, 47, 989-992.
Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2), 83-85.
Hou, H., Fan, Y., Wang, S., Si, L., & Li, B. (2016). Immunomodulatory activity of Alaska pollock hydrolysates obtained by glutamic acid biosensor–Artificial neural network and the identification of its active central fragment. Journal of functional foods, 24, 37-47.
Gutés, A., Céspedes, F., Alegret, S., & Del Valle, M. (2005). Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis. Biosensors and Bioelectronics, 20(8), 1668-1673.
Liu, J. M., Hu, Y., Yang, Y. K., Liu, H., Fang, G. Z., Lu, X., & Wang, S. (2018). Emerging functional nanomaterials for the detection of food contaminants. Trends in Food Science & Technology, 71, 94-106.
Maleki, N., Kashanian, S., Maleki, E., & Nazari, M. (2017). A novel enzyme based biosensor for catechol detection in water samples using artificial neural network. Biochemical engineering journal, 128, 1-11.
Mell, L. D., & Maloy, J. (1975). Model for the amperometric enzyme electrode obtained through digital simulation and applied to the immobilized glucose oxidase system. Analytical Chemistry, 47(2), 299-307.
Mishra, R. K., Alonso, G. A., Istamboulie, G., Bhand, S., & Marty, J. L. (2015). Automated flow based biosensor for quantification of binary organophosphates mixture in milk using artificial neural network. Sensors and Actuators B: Chemical, 208, 228-237.
Rangelova, V., Tsankova, D., & Dimcheva, N. (2010). Soft computing techniques in modelling the influence of ph and temperature on dopamine biosensor. Intelligent and Biosensors, 99.
Rodriguez-Mozaz, S., Marco, M. P., De Alda, M. L., & Barceló, D. (2004). Biosensors for environmental applications: Future development trends. Pure and applied chemistry, 76(4), 723-752.
Sapeliauskas, E., Barauskas, D., Vanagas, G., & Virzonis, D. (2014, September). Surface micromachined CMUTs for liquid phase sensing. In 2014 IEEE International Ultrasonics Symposium (pp. 2580-2583). IEEE.
Sharma, R., Ragavan, K. V., Thakur, M. S., & Raghavarao, K. S. M. S. (2015). Recent advances in nanoparticle based aptasensors for food contaminants. Biosensors and Bioelectronics, 74, 612-627.
Topkaya, S. N., Azimzadeh, M., & Ozsoz, M. (2016). Electrochemical biosensors for cancer biomarkers detection: Recent advances and challenges. Electroanalysis, 28(7), 1402-1419.
Topkaya, S. N., & Azimzadeh, M. (2016). Biosensors of in vitro detection of cancer and bacterial cells. Nanobiosensors for Personalized and Onsite Biomedical Diagnosis. Institution of Engineering and Technology, 73-94.
Valdés-Ramírez, G., Gutiérrez, M., Del Valle, M., Ramírez-Silva, M. T., Fournier, D., & Marty, J. L. (2009). Automated resolution of dichlorvos and methylparaoxon pesticide mixtures employing a Flow Injection system with an inhibition electronic tongue. Biosensors and Bioelectronics, 24(5), 1103-1108.