Adam, M. A. A., Tabana, Y. M., Musa, K. B., & Sandai, D. A. (2017, March). Effects of different mycotoxins on humans, cell genome and their involvement in cancer (Review). Oncology Reports, Vol. 37, pp. 1321–1336. https://doi.org/10.3892/or.2017.5424
Bahadir, E. B., & Sezgintürk, M. K. (2015, June 1). Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Analytical Biochemistry, Vol. 478, pp. 107–120. https://doi.org/10.1016/j.ab.2015.03.011
Baronas, R., Ivanauskus, F., & Kulys, J. (2010). Mathematical modeling of biosensors. An introduction for chemists and mathematicians. In Springer Series on Chemical Sensors and Biosensors (Vol. 4). https://doi.org/10.1007/b100321
Baronas, R, Ivanauskas, F., Maslovskis, R., & Vaitkus, P. (2004). An analysis of mixtures using amperometric biosensors and artificial neural networks. JOURNAL OF MATHEMATICAL CHEMISTRY, 36(3), 281–297. https://doi.org/10.1023/B:JOMC.0000044225.76158.8e
Baronas, Romas. (2017). Nonlinear effects of diffusion limitations on the response and sensitivity of amperometric biosensors. Electrochimica Acta, 240, 399–407.
https://doi.org/10.1016/j.electacta.2017.04.075
Baronas, Romas, Ivanauskas, F., Maslovskis, R., Radavičius, M., & Vaitkus, P. (2007). Locally weighted neural networks for an analysis of the biosensor response. In Kybernetika (Vol. 43).
Baronas, Romas, Kulys, J., Zilinskas, A., Lancinskas, A., & Baronas, D. (2013). Optimization of the multianalyte determination with biased biosensor response. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 126, 108–116. https://doi.org/10.1016/j.chemolab.2013.05.003
Baronas, Romas, Žilinskas, A., & Litvinas, L. (2016). Optimal design of amperometric biosensors applying multi-objective optimization and decision visualization. Electrochimica Acta, 211, 586–594. https://doi.org/10.1016/j.electacta.2016.06.101
Bazin, I., Tria, S. A., Hayat, A., & Marty, J. L. (2017). New biorecognition molecules in biosensors for the detection of toxins. Biosensors and Bioelectronics, 87, 285–298. https://doi.org/10.1016/j.bios.2016.06.083
Bensana, A., Achi, F., Bouguettoucha, A., & Chebli, D. (2019). Amperometric Determination of Hydrogen Peroxide and its Mathematical Simulation for Horseradish Peroxidase Immobilized on a Sonogel Carbon Electrode. Analytical Letters, 52(8), 1215–1235. https://doi.org/10.1080/00032719.2018.1528614
Bergveld, P. (1970). Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. In IEEE TRANSACTIONS ON BIO-MEDICAL ENGINEERING.
Cometa, M. F., Lorenzini, P., Fortuna, S., Volpe, M. T., Meneguz, A., & Palmery, M. (2005). In vitro inhibitory effect of aflatoxin B 1 on acetylcholinesterase activity in mouse brain. Toxicology, 206, 125–135. https://doi.org/10.1016/j.tox.2004.07.009
Dickinson, E. J. F., Ekström, H., & Fontes, E. (2014). COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review. Electrochemistry Communications, 40, 71–74. https://doi.org/10.1016/j.elecom.2013.12.020
Dokos, S. (2017). Modelling Organs, Tissues, Cells and Devices Using MATLAB and COMSOL Multiphysics. https://doi.org/10.1007/978-3-642-54801-7
Eaborn, C. (1988). Compendium of chemical Terminology: IUPAC Recommendations. Journal of Organometallic Chemistry, 356(2), C76–C77. https://doi.org/10.1016/0022-328x(88)83113-9
Ferreira, L. S., De Souza, M. B., & Folly, R. O. M. (2001). Development of an alcohol fermentation control system based on biosensor measurements interpreted by neural networks. Sensors and Actuators, B: Chemical, Vol. 75, pp. 166–171. https://doi.org/10.1016/S0925-4005(01)00540-8
Gell, R. M., & Carbone, I. (2019). HPLC quantitation of aflatoxin B 1 from fungal mycelium culture. Journal of Microbiological Methods, 158(January), 14–17. https://doi.org/10.1016/j.mimet.2019.01.008
Hansmann, T., Sanson, B., Stojan, J., Weik, M., Marty, J.-L., & Fournier, D. (2009). Kinetic insight into the mechanism of cholinesterasterase inhibition by aflatoxin B1 to develop biosensors. Biosensors and Bioelectronics, 24(7), 2119–2124. https://doi.org/10.1016/j.bios.2008.11.006
Jun, Z., Yu-An, T., Xue-Lan, Z., & Jun, L. (2010). An improved dynamic structure-based neural networks determination approaches to simulation optimization problems. Neural Computing and Applications, 19(6), 883–901. https://doi.org/10.1007/s00521-010-0348-x
Kaffash, A., Rostami, K., & Zare, H. R. (2019). Modeling of an electrochemical nanobiosensor in COMSOL Multiphysics to determine phenol in the presence of horseradish peroxidase enzyme. Enzyme and Microbial Technology, 121, 23–28. https://doi.org/10.1016/j.enzmictec.2018.11.001
Mirjalili, S. (2019). Genetic Algorithm. In Evolutionary Algorithms and Neural Networks (pp. 43–55). https://doi.org/10.1007/978-3-319-93025-1_4
Nautiyal, L., Shivach, P., & Ram, M. (2018). Optimal Designs by Means of Genetic Algorithms. In Soft Computing Techniques and Applications in Mechanical Engineering (pp. 151–161). https://doi.org/10.4018/978-1-5225-3035-0.ch007
P, P., & S, V. (2018). A numerical modelling of an amperometric-enzymatic based uric acid biosensor for GOUT arthritis diseases. Informatics in Medicine Unlocked, 12, 143–147. https://doi.org/10.1016/J.IMU.2018.03.001
Pachauri, V., & Ingebrandt, S. (2016). Biologically sensitive field-effect transistors: from ISFETs to NanoFETs. In P. Estrela (Ed.), BIOSENSOR TECHNOLOGIES FOR DETECTION OF BIOMOLECULES (pp. 81–90). https://doi.org/10.1042/EBC20150009
Pohanka, M. (2016). Electrochemical biosensors based on acetylcholinesterase and butyrylcholinesterase. A review. International Journal of Electrochemical Science, 11(9), 7440–7452. https://doi.org/10.20964/2016.09.16
Rowe, J. E. (2015). Genetic Algorithms. In Springer Handbook of Computational Intelligence (pp. 825–844). https://doi.org/10.1007/978-3-662-43505-2_42
Sheliakina, M., Arkhypova, V., Soldatkin, O., Saiapina, O., Akata, B., & Dzyadevych, S. (2014). Urease-based ISFET biosensor for arginine determination. Talanta, 121, 18–23. https://doi.org/10.1016/j.talanta.2013.12.042
Sherma, J. (2000). Thin-layer chromatography in food and agricultural analysis. Journal of Chromatography A, 880(1–2), 129–147. https://doi.org/10.1016/S0021-9673(99)01132-2
Sichilongo, K. F., Obuseng, V. C., & Okatch, H. (2012). Applications of gas chromatography-mass spectrometry (GC-MS): An examination of selected African cases. Chromatographia, 75(17–18), 1017–1037. https://doi.org/10.1007/s10337-012-2277-6
Songsermsakul, P., & Razzazi-Fazeli, E. (2008, June 18). A review of recent trends in applications of liquid chromatography-mass spectrometry for determination of mycotoxins. Journal of Liquid Chromatography and Related Technologies, Vol. 31, pp. 1641–1686. https://doi.org/10.1080/10826070802126395
Stepurska, Kateryna, Dzyadevych, S., & Gridin, S. (2018). Potentiometric enzyme biosensor for aflatoxin B1 detection – Kinetic simulation. Sensors and Actuators, B: Chemical, 259, 580–586. https://doi.org/10.1016/j.snb.2017.12.092
Stepurska, K. V., Soldatkin, O. O., Kucherenko, I. S., Arkhypova, V. M., Dzyadevych, S. V., & Soldatkin, A. P. (2015). Feasibility of application of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic compounds of different nature. Analytica Chimica Acta, 854, 161–168. https://doi.org/10.1016/j.aca.2014.11.027
Su, Y. (2014). Modeling and characteristic study of thin film based biosensor based on COMSOL. Mathematical Problems in Engineering, 2014, 1–6. https://doi.org/10.1155/2014/581063
Turner, A. P. F. (2013). Biosensors: Sense and sensibility. Chemical Society Reviews, 42(8), 3184–3196. https://doi.org/10.1039/c3cs35528d
Wang, L. (2005). A hybrid genetic algorithm-neural network strategy for simulation optimization. Applied Mathematics and Computation, 170(2), 1329–1343. https://doi.org/10.1016/j.amc.2005.01.024
Žilinskas, A., & Baronas, D. (2011). Optimization-based evaluation of concentrations in modeling the biosensor-aided measurement. Informatica, Vol. 22, pp. 589–600.