Adiba, B. D., Salem, B., Nabil, S., & Abdelhakim, M. (2011). Preliminary characterization of food tablets from date (Phoenix dactylifera L.) and spirulina (Spirulina sp.) powders. Powder Technology, 208(3), 725-730.
Ahmadi Ghavidelan, M., & Amiri Chayjan, R. (2016). Optimization of hazelnut kernel drying in an infrared dryer with microwave pretreatment using response surface methodology. Food Science and Technology, 14(64), 178-165.(In Farsi)
Amiri Chayjan, R., Kaveh, M., & Khayati, S. (2015). Modeling Drying Characteristics of Hawthorn Fruit under Microwave Convective Conditions. Journal of Food Processing and Preservation, 39(3), 239-253.
And, G. L., & Barrett, D. M. (2006). Influence of Pre‐drying Treatments on Quality and Safety of Sun‐dried Tomatoes. Part I:Use of Steam Blanching, Boiling Brine Blanching, and Dips in Salt or Sodium Metabisulfite. Journal of Food Science, 71(1), S24-S31.
Arslan, D., & Özcan, M. (2011). Dehydration of red bell-pepper (Capsicum annuum L.): Change in drying behavior, colour and antioxidant content. Food and Bioproducts Processing, 89(4), 504-513.
Aziz, M., Yusof, Y., Blanchard, C., Saifullah, M., Farahnaky, A., & Scheiling, G. (2018). Material Properties and Tableting of Fruit Powders. Food Engineering Reviews, 1-15.
Demiray, E., Tulek, Y., & Yilmaz, Y. (2013). Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. LWT-Food Science and Technology, 50(1), 172-176.
FAO, 2017. FAOSTAT: Data-crops. Food and Agriculture Organization of the United Nations, Rome, Italy.
Ghasemi, A., & Chayjan, R. A. (2018). Optimization of Pelleting andInfrared-Convection Drying Processes of Food and Agricultural Waste Using Response Surface Methodology (RSM). Waste and Biomass Valorization, 1-19
Ghasemi, A., Chayjan, R. A., &Najafabadi, H. J. (2018). Optimizationof granular waste production based on mechanical properties. Waste Management.
Lerma-Arce, V., Oliver-Villanueva, J.-V., & Segura-Orenga, G. (2017). Influence of raw material composition of Mediterranean pinewood on pellet quality. Biomass and Bioenergy, 99, 90-96.
Liu, F., Cao, X., Wang, H., & Liao, X. (2010). Changes of tomato powder qualities during storage. Powder Technology, 204(1), 159-166.
Madiouli, J., Lecomte, D., Nganya, T., Chavez, S., Sghaier, J., & Sammouda, H. (2007). A Method for Determination of Porosity Change from Shrinkage Curves of Deformable Materials. Drying Technology, 25(4), 621-628. doi:10.1080/07373930701227185
Mani, S., Tabil, L. G., & Sokhansanj, S. (2006). Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy, 30(7), 648-654.
Marfil, P., Santos, E., & Telis, V. (2008). Ascorbic aciddegradation kinetics in tomatoes at different drying conditions. LWT-Food Science and Technology, 41(9), 1642-1647
Martí, R., Leiva-Brondo, M., Lahoz, I., Campillo, C., Cebolla-Cornejo, J., & Roselló, S. (2018). Polyphenol and l-ascorbic acid content in tomato as influenced by high lycopene genotypes and organic farming at different environments. Food Chemistry, 239, 148-156
Nadim, Z., & Ahmadi, E. (2016). Rheological properties of strawberry fruit coating with methylcellulose. Journal of Agricultural Machinery.(In Farsi)
Ong, M., Yusof, Y., Aziz, M., Chin, N., & Amin, N. M. (2014). Characterisation of fast dispersible fruit tablets made from green and ripe mango fruit powders. Journal of Food Engineering, 125, 17-23.
Purkayastha, M. D., Nath, A., Deka, B. C., &Mahanta, C. L. (2013). Thin layer drying of tomato slices. Journal of Food Science and Technology, 50(4), 642-653.