مقایسه پروتکل‌های مختلف تصویربرداری تشدید مغناطیسی (MRI) از میوه به

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 استادیار گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 دانشیار گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

4 دانشیارگروه باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

روش تصویربرداری تشدید مغناطیسی (MRI)، یکی از روش­های غیرمخرب تعیین کیفیت و بلوغ میوه‏ها است، که با پروتکل‏های متفاوتی، تراکم و ساختاری که اتم‏های هیدروژن در آن قرار گرفته را نشان می­دهد. در تحقیق حاضر تصاویر MRI گرفته شده با این پروتکل‏ها از بافت گوشت، بخش کوفته شده و هسته میوه بدون آفت و آفت‏زده "به" مقایسه و بهترین پروتکل معرفی شد. به این منظور از 18 عدد میوه "به" بارگذاری شده هنگام انبارداری، با استفاده از دو پروتکل T1 و T2 تصویربرداری تشدید مغناطیسی انجام گردید. بارگذاری‏های میوه "به" در سه سطح نیروی 300، 500 و 700 نیوتن به صورت شبه استاتیکی انجام شده و سپس در دوره­های 30 و 50 روزه در دمای 4 انبارداری شدند. پس از پایان هر دوره انبار­داری عکس­برداری انجام شد. سپس با استفاده از نرم­افزار ImageJ، تضاد تصاویر T1 و T2 از بافت سالم و کوفته شده و دانه میوه‏های "به" بدون آفت، آفت‏زده و بارگذاری شده، تعیین شد. از مقایسه این تصاویر چنین نتیجه­گیری شد که دانه­ها و بافت سالم بدون آفت میوه "به" در تصاویر T1 از تصاویر T2واضح­تر بودند، همچنین کوفتگی ناحیه بارگذاری شده در میوه­های بدون آفت در تصاویر T2قابل تشخیص‏تر از تصاویر T1 بود.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of different Magnetic Resonance Imaging (MRI) protocols from Quince fruit

نویسندگان [English]

  • Fateme noshad 1
  • ali asghari 2
  • mohsen azadbakht 3
  • azim ghasemnezhad 4
1 M.SC. Student of Department of Bio-System Mechanical Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Assistant Professor of Department of Bio-System Mechanical Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Associate Professor of Department of Bio-System Mechanical Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
4 Associate Professor of Department of Horticulture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

The Magnetic Resonance Imaging is one of the non-destructive methods to study quality indices and fruit maturity, that uses different protocols to show the density and structure in which the hydrogen atoms is placed. In this research the MR images of intact, bruised and infested tissues, and seeds of none-infested and infested quince fruits by different MRI protocols were compared and the best protocol was introduced. So by using two T1 and T2 protocols, MR imaging was carried out from 18 loaded quince fruits. The quasi-static loading was performed at three levels of 300, 500 and 700 Newton. Then the fruits were stored for 30 and 50 days in a 4°C refrigerator. Imaging was carried out after each storage period. The ImageJ software was used to determine the contrast of T1 and T2 imaging protocols of the intact and bruised tissues and seeds of none-infested, infested and loaded fruit samples. The comparison of these images was concluded that the seeds and the intact area of none-infested Quince fruit in T1 images were sharper than T2 images. Also, the loaded area bruising of none-infested fruits in the T2 images was more recognizable than T1 images.

کلیدواژه‌ها [English]

  • Quasistatic Loading
  • Non-destructive evaluation method
  • T1 and T2 protocols
  • Infested fruit
Azadbakht, M., Torshizi, M.V., Ziaratban, A. & Ghajarjazi, E. (2016). Application of artificial neural network (ANN) in predicting mechanical properties of canola stem under shear loading. Agricultural Engineering. international. 18, 413-425.
Blink, E.J. (2004). Basic MRI physics. (2nd).
Chen, P., McCarthy, M.J., Kim, S.-M. & Zion, B. (1996). Development of a high-speed NMR technique for sensing maturity of avocados. Transactions of the ASAE. 39, 2205–2209.
Clare, S., Weiskopf, N., Sitaram, R., Josephs, O., Veit, R., Scharnowski, F., Goebel, R., Birbaumer, N., Deichmann, R., Mathiak, K. & Clare, S. (2007). Functional magnetic resonance imaging: Methods and applications. Magnetic Resonance Imaging. 25, 989–1003.
Costa, R.M., Magalhães, A.S., Pereira, J.A., Andrade, P.B., Valentão, P., Carvalho, M. & Silva, B.M. (2009). Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: A comparative study with green tea (Camellia sinensis). Food and Chemical Toxicology. 47, 860–865.
Defraeye, T., Lehmann, V., Gross, D., Holat, C., Herremans, E., Verboven, P., Verlinden, B.E. & Nicolai, B.M. (2013). Application of MRI for tissue characterisation of “Braeburn” apple. Postharvest Biology and Technology. 75, 96–105.
Diels, E., Dael, M. Van, Keresztes, J., Vanmaercke, S., Verboven, P., Nicolai, B., Saeys, W., Ramon, H. & Smeets, B. (2017). Postharvest biology and technology assessment of bruise volumes in apples using X-ray computed tomography. Postharvest Biology and Technology. 128, 24–32.
Gonzalez, J.J., Valle, R.C., Bobroff, S., Biasi, W. V., Mitcham, E.J. & McCarthy, M.J. (2001). Detection and monitoring of internal browning development in ‘Fuji’apples using MRI. Postharvest Biology and Technology. 22, 179–188.
Haishi, T., Koizumi, H., Arai, T., Koizumi, M. & Kano, H. (2011). Rapid detection of infestation of apple fruits by the peach fruit moth, Carposina sasakii Matsumura, larvae using a 0.2-T dedicated magnetic resonance imaging apparatus. Applied Magnetic Resonance. 41, 1-18.
Hernández-Sánchez, N., Hills, B.P., Barreiro, P. & Marigheto, N. )2007(. An NMR study on internal browning in pears. Postharvest Biology and Technology. 44, 260–270.
Ishida, N., Naito, S. & Kano, H. (2004). Loss of moisture from harvested rice seeds on MRI. Magnetic Resonance Imaging. 22, 871–875.
Létal, J., Jirák, D., Šuderlová, L. & Hájek, M. (2003). MRI “texture” analysis of MR images of apples during ripening and storage. Food Science and Technology. 36, 719–727
Mazhar, M., Joyce, D., Cowin, G., Brereton, I., Hofman, P., Collins, R. & Gupta, M. (2015). Non-destructive 1H-MRI assessment of flesh bruising in avocado (Persea americana M.) cv. Hass. Postharvest Biology and Technology. 100, 33–40.
McRobbie, D.W., Moore, E.A., Graves, M.J. & Prince, M.R. (2017). MRI from picture to proton. Cambridge university press.
Musse, M., Quellec, S., Devaux, M.-F., Cambert, M., Lahaye, M. & Mariette, F. (2009). An investigation of the structural aspects of the tomato fruit by means of quantitative nuclear magnetic resonance imaging. Magnetic Resonance Imaging. 27, 709–719.
Patel, N., Rathod, B., Shah, V. & Mahajan, A. (2011). Cydonia vulgaris Pers.: A review on diversity, cultivation, chemistry and utilization. Journal of Pharmaceutical Sciences Letters. 3, 51–61.
Radjabi, G. (1989). Insects attacking rosaceous fruit trees in Iran. Vol. III. Publication of Plant Pest & Diseases
Research Institute. (In Farsi)
Razavi, M.S., Asghari, A., Azadbakh, M. & Shamsabadi, H.A. (2018). Analyzing the pear bruised volume after static loading by Magnetic Resonance Imaging (MRI). Scientia Horticulturae. 229, 33–39.
Sanches, J., Biscegli, C.I., Durigan, J.F., Simões, M.L. & Silva, W.T.L. (2003). Diagnosis of mechanical injuries in avocados by Magnetic Resonance Imaging. Proceedings V World Avocado Congress. 695–700.
Slaughter, D.C. (2009). Nondestructive maturity assessment methods for mango : A review of literature and identification of future research needs. Agricultural and Biological Engineering. 1–18.
Srivastava, R.K., Talluri, S., Beebi, S.K. & Kumar, B.R. (2018). Magnetic resonance imaging for quality evaluation of fruits: a review. Food Analytical Methods. 11, 2943–2960.
Thayyil, S., De Vita, E., Sebire, N.J., Bainbridge, A., Thomas, D., Gunny, R., Chong, K., Lythgoe, M.F., Golay, X. & Robertson, N.J. (2012). Post-mortem cerebral magnetic resonance imaging T1 and T2 in fetuses, newborns and infants. European Journal of Radiology. 81, e232–e238.
Thomas, M., Guillemin, F., Guillon, F. & Thibault, J.F. (2003). Pectins in the fruits of Japanese quince (Chaenomeles japonica). Carbohydrate Polymers. 53, 361–372.