بهینه‌سازی چند هدفه تخصیص مکانیزاسیون پایدار در سامانه‌های محلول‌پاشی و برداشت محصول برنج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

2 گروه بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 گروه حسابداری و مدیریت عملیات، مدرسه بازرگانی نروژ، اسلو، نروژ

4 گروه مهندسی بیوسیستم دانشکده کشاورزی دانشگاه شهید چمران اهواز

چکیده

انجام عملیات کشاورزی تحت سامانه‌های مختلف مکانیزاسیون، اثرات متفاوت اقتصادی، اجتماعی و زیست‌محیطی را بر جای می‌گذارد. تعارضات به‌وجود آمده در این ابعاد، انتخاب و سطح‌بندی سامانه‌های مکانیزاسیون پایدار را بحث‌برانگیز و مشکل می‌کند. در این مطالعه، روشی در دستیابی به سطوح بهینه سامانه‌های محلول‌پاشی و برداشت شلتوک در شهرستان رامهرمز به کار رفته است تا به وسیله آن بتوان به کاربرد مکانیزاسیون در راستای پایداری کشاورزی دست یافت. شاخص‌ها شامل رضایت، سهولت کار، سلامتی و ایمنی، اشتغال در بخش ماشینی، نیروی کارگری، مصرف سوخت دیزل، مصرف سموم، شدت بار مزرعه و هزینه‌های عملیاتی در نظر گرفته شدند. سه سامانه‌ محلول‌پاشی با سمپاش پشتی، تراکتوری و پهپاد و سه سامانه برداشت دومرحله‌ای (درو و تغذیه دستی به کمباین غلات)، برداشت مستقیم با کمباین غلات و برداشت مستقیم با کمباین برنج در مدل قرار گرفتند. با ترکیب روش‌های  AHP و TOPSIS شاخص شباهت برای ابعاد اجتماعی و زیست‌محیطی محاسبه شد. همچنین هزینه هر سامانه به عنوان ضرایب توابع هدف در بهینه‌سازی چندهدفه منظور شدند. بر اساس چارچوب ارائه شده، ترکیب‌های مکانیزاسیون بهینه سامانه‌های محلول‌پاشی و برداشت شلتوک شهرستان رامهرمز ارائه گردیدند. نتایج بهینه پارتو نشان داد در صورت نبود محدودیت‌های ماشینی موجود، توسعه توان اجرایی سامانه‌های نوین محلول‌پاشی با پهپاد تا 2000 هکتار و برداشت مستقیم با کمباین برنج تا 1000 هکتار به عنوان سناریوهای بهینه در راستای پایداری کشاورزی خواهند بود. با به‌کارگیری چارچوب ارائه شده، نه‌تنها می‌توان اهداف پایداری در شناسایی بهترین سطح‌بندی سامانه‌های مکانیزاسیون را تأمین کرد، بلکه امکان بررسی اثر سناریوهای مختلف نیز ‌وجود دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multi-objective optimization of allocating sustainable mechanization for spraying and harvesting systems in paddy fields

نویسندگان [English]

  • Mohammad Ali Hormozi 1
  • Hassan Zaki Dizaji 1
  • Hoshang Bahrami 2
  • Mahdi Sharifyazdi 3
  • Nasim Monjezi 4
1 Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz
2 Department of Biosystems, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Department of Accounting and Operations Management, BI Norwegian Business School- Oslo campus, Norway.
4 Biosystems engineering Dept., Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Applying agricultural operations under different mechanization systems has different economic, social, and environmental consequences. Conflicts among these dimensions complicate the selection and allocation of sustainable mechanization systems. In this study, a method was used to allocate optimal patterns of spraying and harvesting systems in the Ramhormoz region to achieve agricultural sustainability. Indices included satisfaction, ease of work, health and safety, employment in the machine sector, labor force, diesel fuel consumption, pesticide consumption, farm load intensity, and operating costs. Three spraying systems namely backpack, tractor, and unmanned aerial vehicle (UAV), and three harvesting systems namely two-stage (harvesting and manual feeding to grain combine), direct harvesting with a grain combine harvester, and harvesting with rice combine harvester were included in the model. Combining AHP and TOPSIS methods, the similarity index for social and environmental dimensions was calculated and this value along with the cost of each system was used as coefficients of objective functions. The multi-objective optimization model to achieve sustainable agricultural mechanization was analyzed using a genetic algorithm. Pareto optimal results showed that in the absence of existing machine constraints, the development of the operational capacity of modern systems like spraying with UAV up to 2000 hectares and direct harvesting with rice harvesters up to 1000 hectares will be optimal scenarios for agricultural sustainability. Using the proposed method, not only can sustainable goals be achieved in identifying the best patterns of mechanization systems, but it is also possible to examine the effect of different scenarios under different constraints.

کلیدواژه‌ها [English]

  • mechanization
  • sustainability
  • optimization
  • spraying
  • harvesting
Abraham, A. & Jain, L. (2005). Evolutionary multiobjective optimization. Evolutionary Multiobjective Optimization, Springer, 1-6.
Alizadeh, M. & Haghtalab, D. (2019). Field Performance Assessment of Self-propelled and Knapsack Power Rice Reapers, and Comparison with Manual Harvesting. Agricultural Mechanization and Systems Research, 20(72), 55-72. (in Farsi)
Alizadeh, M. R. (2003). Field study of reaper performance in rice harvesting and comparison with traditional method. Journal of Agricultural Engineering Research, 3(13), 1-14. (in Farsi)
Almassi, M., Kiani, S. & Loveimi, N. (2008). Principles of agricultural mechanization. Tehran, Iran, Jungle Publication.
Askin, D. & Askin, V.  (2012). Financial budget manual 2012, Lincoln University. Faculty of Commerce.
Banerjee, S. & Punekar, R. M. (2020). A sustainability-oriented design approach for agricultural machinery and its associated service ecosystem development. Journal of Cleaner Production, 121642.
Bezruk, Y., Lavèn, P., Hoffmann, C. & Doluschitz, R. (2014). Sustainability in agricultural machinery production-an empirical study among farmers. Landtechnik, 69(2), 84-89.
Bochtis, D., Sørensen, C. A. G. & Kateris, D. (2019). Choosing a Machinery System. Operations Management in Agriculture. D. Bochtis, C. A. G. Sørensen and D. Kateris, Academic Press: 117-158.
Bochtis, D. D., Sørensen, C. G. & Busato, P. (2014). Advances in agricultural machinery management: A review. Biosystems engineering, 126, 69-81.
Camarena, E., Gracia, C. & Sixto, J. C. (2004). A mixed integer linear programming machinery selection model for multifarm systems. Biosystems Engineering, 87(2), 145-154.
Corti, D., Granados, M. H., Macchi, M. & Canetta, L. (2013). Service-oriented business models for agricultural machinery manufacturers: Looking forward to improving sustainability. 2013 International Conference on Engineering, Technology and Innovation (ICE) & IEEE International Technology Management Conference.
Cupiał, M. & Kowalczyk, Z. (2020). Optimization of Selection of the Machinery Park in Sustainable Agriculture. Sustainability, 12(4), 1380.
De Toro, A., Gunnarsson, C., Lundin, G. & Jonsson, N. (2012). Cereal harvesting–strategies and costs under variable weather conditions. Biosystems Engineering, 111(4), 429-439.
Deb, K., Agrawal, S., Pratap, A. & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. International conference on parallel problem solving from nature, Springer.
Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on  evolutionary computation, 6(2): 182-197.
Emami, M., Almassi, M. & Bakhoda, H. (2018). Agricultural mechanization, a key to food security in developing countries: strategy formulating for Iran. Agriculture & Food Security, 7(1): 24.
Faiçal, B. S., H. Freitas, P. H. Gomes, L. Y. Mano, G. Pessin, A. C. P. L. F. de Carvalho, B. Krishnamachari & Ueyama, J. (2017). An adaptive approach for UAV-based pesticide spraying in dynamic environments. Computers and Electronics in Agriculture, 138: 210-223.
FAO. (2019). Sustainable Agricultural Mechanization. http://www.fao.org/sustainable-agricultural-mechanization.
Fleming, P. H. (2003). Farm technical manual 2003.
García-Alcaraz, J., Maldonado-Macías, A., Hernández-Arellano, J., Blanco-Fernández, J., Jiménez-Macías, E. & Sáenz-Díez Muro, J. (2016). Agricultural tractor selection: a hybrid and multi-attribute approach. Sustainability 8(2), 157.
García-Alcaraz, J. L., Martínez-Loya, V., Maldonado-Macias, A. & Avelar-Sosa, L. (2017). Selection of Agricultural Technology: A Multi-attribute Approach. International Conference on Technologies and Innovation, Springer.
Gathorne-Hardy, A. (2016). The sustainability of changes in agricultural technology: The carbon, economic and labour implications of mechanisation and synthetic fertiliser use. Ambio, 45(8), 885-894.
Gunnarsson, C., Spörndly, R., Rosenqvist, H., De Toro, A. & Hansson, P. A. (2009). A method of estimating timeliness costs in forage harvesting illustrated using harvesting systems in Sweden. Grass and forage science, 64(3), 276-291.
Hahn, R. H. & Rosentreter, E. E. (1988). ASAE Standards 1987: Standards, Engineering Practices and Data Developed and Adopted by the American Society of Agricultural Engineers/ed.
Hasan Jani, H., Hosseini, M., Khadem Alhosseini, N. A. & Alizadeh, M. R. (2007). Evaluation of Different Rice Harvesting Methods in Gilan Province. Journal of Agriculture, 9(1), 23-38 (in Farsi).
Hormozi, M., Abdeshahi  A., Asoodar, M. & Baruah, D. (2016). Energy use pattern of paddy production systems in khuzestan province, Iran. Iran Agricultural Research, 35(2), 47-56.
Hormozi, M. A., Asoodar, M. A. & Abdeshahi, A. (2012). Impact of mechanization on technical efficiency: A case study of rice farmers in Iran. Procedia Economics and Finance, 1, 176-185.
Keshvari, A. & Marzban, A. (2019). Prioritizing the Power Arrival in Khuzestan Province Agriculture using FAHP and FTOPSIS. Journal of Agricultural Machinery, 9(1), 235-251. (in Farsi)
Koritz, K. (2014). Optimization in a system of systems: Minimizing a farm's environmental impact through operational efficiency. Master Thesis, University of Illinois at Urbana-Champaign.
Landers, A. (2000). Farm machinery: selection, investment and management, Farming Press, United Business Media.
Leiva, F. & Morris, J. (2001). PH—Postharvest Technology: Mechanization and Sustainability in Arable Farming in England. Journal of Agricultural Engineering Research, 79(1), 81-90.
Li, P. & Zheng, Z. (2017). Minimized Cost Programming Method for Farming Machines’ Distribution Based on Reliability Analysis. 2017 ASABE Annual International Meeting. St. Joseph, MI, ASABE: 1.
Loveimi, N., Gilany, A. & Alizadeh, M. (2008). The Effect of Harvesting Method on Losses for Two Rice Varieties in Khouzestan Province. Journal of Agricultural Engineering Research, 9(3), 89-106. (in Farsi)
Mrema, G., Soni, P. & Rolle, R. (2014). A Regional Strategy for Sustainable Agricultural Mechanization. Sustainable Mechanization across Agri-Food Chains in Asia and the Pacific Region; Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific: Bangkok, Thailand: 74.
Pandey, M. (2008). Mechanization of Hill Agriculture. Proceedings of Conference on Agricultural Mechanization Technologies for North East India, Organized by Division of Agricultural Engineering, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.
Radoglou-Grammatikis, P., P. Sarigiannidis, T. Lagkas & Moscholios, I. (2020). A compilation of UAV applications for precision agriculture. Computer Networks, 172: 107148.
Rahman, M. F., S. Fan, Y. Zhang & Chen, L. (2021). A Comparative Study on Application of Unmanned Aerial Vehicle Systems in Agriculture. Agriculture, 11 DOI: 10.3390/agriculture11010022.
Rahmati, M. H., Sohrabvandi, G. A., Khodadadi, M. & Razdari, A. M. (2014). Technical and Economic Evaluation of Rice Harvesting Methods in Shirvan-Chrdavol Region. Journal of Agricultural Machinery, 4(2), 378-386. (in Farsi)
Romanelli, T. L. & Milan, M. (2012). Machinery management as an environmental tool-material embodiment in agriculture. Agricultural Engineering International: CIGR Journal, 14 (1), 73-73.
Rostami, S., Lotfalian, M. & Hosseinzadeh Samani, B. (2018). Assessment and Comparison of Conventional and Straw Walker Combines Harvesting Losses in Fars Province. Agricultural Mechanization and Systems Research,  19: 85-96. (in Farsi)
Saaty, T. L. (1988). What is the analytic hierarchy process? Mathematical models for decision support, Springer: 109-121.
Safari, M. & Sheikhi Garjan, A. (2020). Comparison between unmanned aerial vehicle and tractor lance sprayer against Dubas bug Ommatissus lybicus (Hemiptera: Tropiduchidae). Iranian Journal of Plant Protection Science, 51(1): 13-26.
Safari, M., Alizadeh, M. R.  & Gerami, K. (2014). Comparison of Three Conventional Rice Combine Harvesters in Mazandaran, Iran. Journal of Agricultural Engineering Research, 14(4), 73-86. (in Farsi)
Sahu, R. & Raheman, H. (2008). A decision support system on matching and field performance prediction of tractor-implement system. Computers and Electronics in Agriculture, 60(1), 76-86.
Sen, P. & Yang, J. B. (2012). Multiple criteria decision support in engineering design, Springer Science & Business Media.
Søgaard, H. T. & Sørensen, C. G. (2004). A model for optimal selection of machinery sizes within the farm machinery system. Biosystems Engineering, 89(1), 13-28.
Sopegno, A., Busato, P., Berruto, R. & Romanelli, T. L. (2016). A cost prediction model for machine operation in multi-field production systems. Scientia Agricola, 73(5), 397-405.
Sørensen, C. (2003). Workability and machinery sizing for combine harvesting. Agricultural Engineering International: CIGR Journal, 5, 1-19.
Witney, B. (1988). Choosing and using farm machines, Longman.
Zhou, Q., Lou, J., Xie, F. & Liu, Q. (2011). The method research on optimum selection of agricultural machinery. International Journal of Digital Content Technology and its Applications, 5(6), 337-334.