طراحی، ساخت و ارزیابی سامانه توموگرافی الکتروخازنی به منظور پایش برخط جریان غلات عبوری از لوله

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی ماشین های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

در تعیین دبی‌ جرمی مواد فله‌ای مانند غلات که از مجاری بسته چون لوله عبور می‌کنند، اندازه‌گیری برخط نسبت حجمی مواد جامد و توزیع آنها در مقطع لوله از اهمیت ویژه‌ای برخوردار است. با توجه به نقاط ضعف روش‌های موجود مانند ایجاد مانع در مسیر عبور مواد (نفوذی بودن) و دقت پایین، در این پژوهش روش غیرتماسی توموگرافی ظرفیت خازنی الکتریکی برای پایش جریان مواد فله‌ای مورد بررسی قرارگرفت که برای تعیین میزان مواد و تراکم آن، از اندازه‌گیری خصوصیات دی‌الکتریک مواد درون لوله استفاده می‌کند. سامانه توموگرافی الکتروخازنی ساخته شده دارای 8 الکترود اصلی و 16 الکترود فرعی، محافظ‌های ضد نویز و مدار فرستنده و گیرنده است که بر روی لوله نارسانا به قطر 20 سانتی‌متر نصب شد. مشکل عمده در عملکرد توموگرافی الکتروخازنی موجود، نویزپذیری و عدم بازسازی تصویر مطلوب با الگوریتم مرسوم LBP است. به همین دلیل در این پژوهش عملکرد الگوریتم Tikhonov با الگوریتم مرسوم LBP مقایسه شد. در این پژوهش با استفاده از محافظ‌های مختلف، نویزپذیری سامانه کاهش داده شد به طوری که نرخ سیگنال به نویز به میزان 09/56 دسی‌بل رسید که نشان‌دهنده کیفیت مطلوب سیگنال است. مقایسه دو الگوریتم نشان داد که الگوریتم Tikhonov دارای رفتار مناسبی در ساخت توموگرام از توده گندم در کنار دیواره‌های لوله در مقایسه با الگوریتم LBP بوده و بجز شرایطی که لوله به طور کامل پر است، در سایر الگوهای پرشدگی مقطع لوله، دارای عملکرد مطلوب‌تری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design, construction and evaluation of an electrical capacitance tomography system to monitor grains flow passing through pipeline

نویسندگان [English]

  • Nazilla Tarabi
  • Hossein Mousazadeh
  • Jalil Taghizadeh-Tameh
Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

 
In determining the mass flow rate of bulk materials such as grains that pass through closed channels such as pipes, the online measurement of the volume ratio of solid materials and their distribution in the pipe cross-section is of particular importance. Considering the features of conventional methods such as be creating obstacles in the passage of materials (permeability) and low accuracy, in this research the non-contact tomography method of electrical capacitance was investigated for monitoring the flow of solid materials. In this method, to measure the amount of material and its density, it uses the measurement of the dielectric properties of the material inside the pipe. The developed electro-capacitance tomography system has 8 main electrodes and 16 secondary electrodes, anti-noise guards and a transmitter and receiver circuit, which was installed on a non-conductive pipe with a diameter of 20 cm. The main problem in the performance of the electro-capacitance tomography is the noise and lack of optimal image reconstruction with the conventional LBP algorithm. In this study, the performance of Tikhonov algorithm was compared with the conventional LBP algorithm. In this research, by using different guards, the noise level of the system was reduced so that the signal-to-noise ratio reached 56.09 dB. The results of the comparison of two algorithms showed that the Tikhonov algorithm has a good behavior in reconstruction of a tomogram of the wheat mass next to the pipe walls compared to the LBP algorithm, and except for the condition that the pipe is completely full, in other filling patterns of the pipe, has a better performance.

کلیدواژه‌ها [English]

  • Electrical tomography
  • Capacitance
  • Image reconstruction
  • Grains

Design, construction and evaluation of an electrical capacitance tomography system to monitor grains flow passing through pipeline

Extended Abstract

Introduction

On-line monitoring of the distribution and density of solids that are transferred from the pipe are required in various processes. Conventional methods of mass flow measurement have limitations. Therefore, in this study, electrical capacitance tomography was used to determine the distribution of grain materials such as wheat in the pipe. In this research, the aim is to improve the performance of the capacitance tomography system by using a suitable arrangement for the electrodes and guards around it and using the Tikhonov reconstruction algorithm instead of the conventional LBP algorithm.

Material and Methods

In order to evaluate the capability of the electrical capacitance tomography system for determining the distribution of grains in the pipe section and measuring the mass flow rate of passing materials, a system based on electrical capacitance tomography was designed and manufactured. This system has three parts. The first part includes capacitive sensors. Sensors are actually a set of electrodes that are arranged around the pipe. The second part is a circuit for stimulating the sensors and measuring the response from the sensors. The third part includes the image reconstruction algorithm and the extraction of information on the distribution of particles in the pipe cross-section.

Algorithms of image reconstruction in electrical capacitance tomography have two stages of solving the direct problem and the inverse problem. The direct problem is to find the capacitance between the electrodes considering any form of known permittivity distribution. In this research, in addition to the conventional LBP algorithm, the performance of another algorithm called the Tikhonov regularization method is investigated. In this research parameters such as signal-to-noise ratio (SNR), which indicates the quality of the signal and sensitivity of the system are investigated. Root mean square error (RMSE) parameter, absolute average percentage of the error (MAPE) and standard deviation (SD) for both image reconstruction algorithms are compared and discussed.

Results and discussion

The dynamic range of boundary potentials is equal to 1740 millivolts. High signal-to-noise ratio indicates resistance of signal to noise and better signal quality. According to the obtained data, the signal-to-noise ratio is equal to 56.09 dB and the voltage variation parameter (VC) is equal to 424 millivolts. Two conventional LBP and Tikhonov algorithms were used to reconstruct the pipe section. The performance of the system was investigated in eight different positions of filling the pipe section by wheat. In situations P2 to P8, the RMSE values for the Tikhonov reconstruction algorithm are in the range of 0.04 to 0.01, which is lower than the mean squared error values for the LBP algorithm. The lowest value of RMSE belongs to the Tikhonov algorithm and for the position where the object is in the middle, and its value is equal to 0.0304. As grains of wheat was approaching the wall, this error increases and reaches to 0.037.

The results showed that with the increase of pipe filling and material density, the standard deviation decreases, and in other words, the accuracy of the system increases at higher densities, and as it was clear from the tomograms, the SD values in the Tikhonov algorithm are less than the algorithm is LBP.

Conclusion

The comparison results of the two algorithms showed that the Tikhonov algorithm has a more favorable behavior in making a tomogram of the wheat mass next to the pipe walls compared to the LBP algorithm. Both algorithms did not perform well in identifying the empty space between the wheat clumps, so it is suggested that other algorithms be used to detect the empty space between the wheat clumps. In general, considering the appropriate speed of Tikhonov's algorithm, this algorithm can be a suitable alternative to the conventional LBP algorithm.

Alhosani, E. (2016). Electrical capacitance tomography for real-time monitoring of process pipelines (Doctoral dissertation, University of Bath).
Almutairi, Z., Al-Alweet, F. M., Alghamdi, Y. A., Almisned, O. A., & Alothman, O. Y. (2020). Investigating the characteristics of two-phase flow using electrical capacitance tomography (ECT) for three pipe orientations. Processes, 8(1), 51.
Bera, T. K., & Nagaraju, J. (2012). Studying the resistivity imaging of chicken tissue phantoms with different current patterns in Electrical Impedance Tomography (EIT). Measurement, 45(4), 663-682.
Cui, Z., Wang, H., & Yin, W. (2015). Electrical capacitance tomography with differential sensor. IEEE Sensors Journal, 15(9), 5087-5094.
Dichter, G. S. (2022). Functional magnetic resonance imaging of autism spectrum disorders. Dialogues in clinical neuroscience.
Figueiredo, M. M. F., Goncalves, J. L., Nakashima, A. M. V., Fileti, A. M. F., & Carvalho, R. D. M. (2016). The use of an ultrasonic technique and neural networks for identification of the flow pattern and measurement of the gas volume fraction in multiphase flows. Experimental Thermal and Fluid Science, 70, 29-50.
Felix, D. (2017). Experimental investigation on suspended sediment, hydro-abrasive erosion and efficiency reductions of coated Pelton turbines (Doctoral dissertation). Switzerland: Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich.
Jiangbao, Y., Lei, Z., Feng, Z., Tan, X., & Changsheng, Z. (2018). An Improved Normalized Model of Electrical Capacitance Tomography. In MATEC Web of Conferences (Vol. 176, p. 01032). EDP Sciences.
Karimian, A. (1398). Centripetal mass flow meter for solid material, Iran Patent No. 101678. (InPersian).
Lambrou, T. P., Anastasiou, C. C., Panayiotou, C. G., & Polycarpou, M. M. (2014). A low-cost sensor network for real-time monitoring and contamination detection in drinking water distribution systems. IEEE sensors journal, 14(8), 2765-2772.
Mohamad, E. J., Rahim, R. A., Rahiman, M. H. F., Ameran, H. L. M., Muji, S. Z. M., & Marwah, O. M. F. (2016). Measurement and analysis of water/oil multiphase flow using Electrical Capacitance Tomography sensor. Flow Measurement and Instrumentation, 47, 62-70.
Marashdeh, Q. (2006). Advances in electrical capacitance tomography. The Ohio State University.
Perera, K., Pradeep, C., Mylvaganam, S., & Time, R. W. (2017). Imaging of oil-water flow patterns by electrical capacitance tomography. Flow Measurement and Instrumentation, 56, 23-34.
Russo, S., Nefti-Meziani, S., Carbonaro, N., & Tognetti, A. (2017). A quantitative evaluation of drive pattern selection for optimizing EIT-based stretchable sensors. Sensors, 17(9), 1999.
Roman, A. J., Ervin, J. S., & Cronin, J. (2020). Studies of two-phase flow through a sudden expansion using electrical capacitance tomography. International Journal of Refrigeration, 119, 206-215.
Sharif, P. M., Nematizadeh, M., Saghazadeh, M., Saghazadeh, A., & Rezaei, N. (2022). Computed tomography scan in COVID-19: a systematic review and meta-analysis. Polish Journal of Radiology, 87(1), 1-23.
Shetty, D. & Kolk, R.A. (2010). Mechatronics system design. Cengage Learning.
Vetter, K., Barnowksi, R., Haefner, A., Joshi, T. H., Pavlovsky, R., & Quiter, B. J. (2018). Gamma-Ray imaging for nuclear security and safety: Towards 3-D gamma-ray vision. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878, 159-168.
Voss, A., Pour-Ghaz, M., Vauhkonen, M., & Seppänen, A. (2020). Retrieval of the saturated hydraulic conductivity of cement-based materials using electrical capacitance tomography. Cement and Concrete Composites, 112, 103639.
Wang, M. (2022). Industrial Tomography (Second Edition). Systems and Applications Woodhead Publishing Series in Electronic and Optical Materials, United Kingdom.
Wang, S., Sun, X., Xu, C., Bao, J., Peng, C. and Tang, Z. (2020). Investigation of a circulating turbulent fluidized bed with a fractal gas distributor by electrostatic-immune electrical capacitance tomography. Powder Technology, 361, 562-570.
Zheng, D., Wang, S., Liu, B. and Fan, S. (2016). Theoretical analysis and experimental study of Coriolis mass flow sensor sensitivity. Journal of Fluids and Structures, 65, 295-312.
Zhang, L. and Zhang, M. (2021). Image reconstruction of electrical capacitance tomography based on optimal simulated annealing algorithm using orthogonal test method. Flow Measurement and Instrumentation, 80,101996.
Zhou, H., Tu, Q.Y. and Wang, H.G. (2019). Investigation of the complex gas-solids flow characteristics in a fluidized bed with a Wurster tube by process tomography and CFD simulation. Powder Technology, 357,117-133.