پایش بلادرنگ نرخ جریان جرمی مواد دانه‌ای در لوله سقوط خطی‌کارها با استفاده از حسگر پیزوالکتریک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

2 گروه مهندسی ماشین‌های کشاورزی، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران

چکیده

در خطی کاری پایش دقیق دبی بذر و کود مشکل است، زیرا دانه‌ها به صورت توده‌ای و نزدیک به هم حرکت می‌کنند. هدف از انجام این پژوهش پایش جریان جرمی مواد دانه‌ای در لوله سقوط خطی‌کارها با استفاده از یک حسگر پیزوالکتریک بود. سامانه آزمایشگاهی شامل مخزن، موزع، لوله سقوط و یک حسگر پیزوالکتریک بود. برای اینکه  نوسانات حرکت خطی کار در مزرعه شبیه‌سازی شود، یک پایه ارتعاشی که در دو راستای عمود بر هم حرکت می‌کرد طراحی شد. بیشترین دامنه حرکت پایه ارتعاشی 99/8 سانتی‌متر متناسب با پستی و بلندی مزرعه پس از خاک‌ورزی در نظر گرفته شد. حسگر در دو حالت استاتیکی و دینامیکی برای بذر گندم، بذر یونجه و کود تریپل سوپرفسفات مطابق با نرخ کاشت معمول خطی‌کارها مورد ارزیابی قرار گرفت. نتایج نشان داد، سیگنال خروجی حسگر متناسب با تمامی نرخ‌های مختلف جریان جرمی در هر دو حالت استاتیکی و دینامیکی بود. ضریب تبیین در حالت استاتیکی برای بذر گندم، بذر یونجه و کود تریپل سوپرفسفات به ترتیب 95/0، 99/0 و 98/0 بود. ضریب تبیین در حالت دینامیکی برای بذر گندم، بذر یونجه و کود تریپل سوپرفسفات به ترتیب 93/0، 86/0 و 98/0 بود. به علاوه، حسگر پیزوالکتریک به خوبی تغییرات لحظه‌ای جریان جرمی در هر نرخ را متناسب با خوانش ترازوی دیجیتال پایش نمود. نتایج نشان داد که حسگر توسعه یافته را می‌توان برای پایش نرخ جریان جرمی بذر و کود در لوله سقوط  کارنده‌ها استفاده کرد تا به صورت برخط میزان اعمال نهاده در واحد سطح محاسبه شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Real-time monitoring of the mass flow rate of granular materials in the seeder tube using a piezoelectric sensor

نویسندگان [English]

  • salman ranjbari 1
  • MohammadReza Maleki 1
  • farzad mohammadi 2
  • jalal khodaei 1
  • Kaveh Mollazade 1
1 Department of Biosystems Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
2 Department of Agricultural Machinery Engineering, Faculty of Agricultural, University of Tehran, Karaj, Iran
چکیده [English]

It is difficult to accurately measure the flow rate of seeds and fertilizers in grain drills, because the granules move in a continuous dense state. The purpose of this research was to monitor the mass flow of granular materials in the fall tube of the drill using a piezoelectric sensor. The laboratory system consisted of a repository box, a fluted roller metering device, a fall tube, and a piezoelectric sensor. To simulate the drill movement in the field, a vibrating stand was designed to oscillate the set-up in two perpendicular directions. The maximum amplitude stand was 8.99 cm according to the peaks and depressions available in a field after plowing. The sensor was evaluated in two static and dynamic modes for wheat seed, alfalfa seed, and triple superphosphate fertilizer with the usual drilling rate. The results showed the output signal of the sensor was proportional to all different mass flow rates in both static and dynamic states. The correlation coefficient was 0.95, 0.99, and 0.98 in static mode and 0.93, 0.86, and 0.98 in dynamic mode for wheat, alfalfa seed, and triple superphosphate fertilizer, respectively. In addition, the piezoelectric sensor could instantaneously monitor the sudden changes in the mass flow according to the reading of the digital scale. The results showed that the developed sensor can be used to monitor the mass flow rate of seeds and fertilizers in drills for calculating the drilling rate in real time.

کلیدواژه‌ها [English]

  • Contact sensing
  • Precision agriculture
  • Seed flow rate detection
  • Sensing unit
  • Sensor sensitivity

Real-time monitoring of the mass flow rate of granular materials in the seeder tube using a piezoelectric sensor

 

EXTENDED ABSTRACT

Introduction

In the modern agriculture, the two key issues determining the economic efficiency of arable land and industrial equipment utilization are the challenge of obtaining a uniform grain distribution over the entire field and the detection of drill tube clogging (Yatskul et al., 2017). Solving both issues allow for increasing the efficiency of food production while reducing the use of herbicides, seeds, fertilizers, and water. Practically, since grains move in a dense state, it is difficult to measure accurate grains flow rate. While optical measurement methods have been used to monitor the mass flow of seeds (Besharati et al., 2019), However, due to the existence of dust inside the drill tube, they are not reliable enough. As an alternative, a piezoelectric sensor can be used to measure the flow rate of seeds or granular fertilizers. Nevertheless, literature review shows that few research works utilized piezoelectric sensors for this purpose (Seminara et al., 2011; Maleki et al. 2008). Therefore, in this study, a measuring system was developed to monitor the mass flow of granular materials in the drill applicator's tube.

Materials and Methods

A laboratory set-up was developed to measure the mass flow of granular materials, avoiding the potential error available under field conditions. It consisted of a piezoelectric impact plate installed beneath a drill tube. To simulate the field condition, a vibratory stand was designed according to the drill oscillating, while traveling across the field. Then triple superphosphate in 5 application rates from 3.42±1.22 to 19.3±0.95 g/s, wheat seed in 8 application rates from 2.65±0.23 to 19.02±0.86 g/s, and alfalfa seed in 7 application rates from 0.42±0.02 to 1.6±0.08 g/s in 30 s time lap were measured in both static and dynamic conditions. The sensor performance in seed flow measurement would be appropriate if changes in obtained voltage data set from the sensor comply with granular grains mass changes measured by the digital scale. The standard deviation index was employed to evaluate the sensor performance in the instantaneous detection of mass flow rates.

Results and Discussion

The results showed that the mass flow was correlated with piezoelectric sensor signals for all examined materials. The sensor could monitor the mass flow rates of wheat (R2=0.98), alfalfa (R2=0.99), and triple superphosphate fertilizer (R2=0.99) both in static and dynamic conditions. According to the results, the sensor could effectively measure the mass flow both under static and dynamic conditions for wheat seeds from 2.65±0.23 to 14.22±0.78 g/s (80.16±11.56 to 430.18±23.59 kg/ha) and for triple superphosphate fertilizer from 3.75±0.42 to 15.14±0.63 g/s (113.44±10.27 to 458.01±18.75 kg/ha) at speed of 7 km/h and 17 cm inter-row spacing.  Also, according to the results obtained, the sensor could effectively measure the mass flow under dynamic condition for alfalfa seeds from 0.42±0.02 to 1.57±0.08 g/s (16.61±0.79 to 62.10±3.16 kg/ha) at speed of 7 km/h and 13 cm inter-row spacing. Since the alfalfa seeds had nearly fine sizes, it was necessary to increase the sensitivity of the sensor, which made it possible to monitor the mass flow well in the static condition, but due to the decrease in the signal-to-noise ratio, the performance of the sensor decreased in the dynamic condition. These results were proved by analysis of variance and compare means test. In addition, the more accurate instantaneous mass flow sensing, the less variation in standard deviation was calculated over the examined time for both sensor and digital scale signals.

Conclusion

The piezoelectric impact sensing system is acceptably used to estimate the seed mass flow rate according to the strong linear relationship between the actual seed mass changes and the system-acquired voltages Results showed that the developed sensor can be used in practical sowing to detect the seed flow rate on grain drills.

 

 

Al-Mallahi, A. A. & Kataoka, T. (2013). Estimation of mass flow of seeds using fiber sensor and multiple linear regression modelling. Computers and Electronics in Agriculture, 99, 116-122. https://doi.org/10.1016/j.compag.2013.09.005.
Anthonis, J., Vaes, D., Engelen, K., Ramon H. & Swevers, J. (2007). Feedback approach for reproduction of field measurements on a hydraulic four poster. Biosystems Engineering, 96(4), 435–445. https://doi.org/10.1016/j.biosystemseng.2006.11.015.
Aw, S.R., Rahim, R.A., Rahiman, M.H.F., Yunus, F.R.M. & Goh, C.L. (2014). Electrical resistance tomography: A review of the application of conducting vessel walls. Powder Technology, 254, 256-264. https://doi.org/10.1016/j.powtec.2014.01.050
Bachman, W. J. (1988). U.S. Patent No. 4,782,282. Washington, DC: U.S. Patent and Trademark Office.
Balasubramanian, D. (2001). PH—Postharvest technology: Physical properties of raw cashew nut. Journl of Agricultural Engineering Research, 78(3), 291-297. https://doi.org/10.1006/jaer.2000.0603.
Basu, S. (2018). Plant Flow Measurement and Control Handbook: Fluid, Solid, Slurry and Multiphase Flow. Chapter 8 - Solid Flow Measurement, Academic Press; 1st edition. PP 677-801.
Besharati, B., Navid, H,. Karimi, H., Behfar, B. & Eskandari, I. (2019). Development of an infrared seed-sensing system to estimate flow rates based on physical properties of seeds. Computers and Electronics in Agriculture, 162, 874–881. https://doi.org/10.1016/j.compag.2019.05.041.
Borgelt, S.C. (2015). Sensing and measurement technologies for site specific management. pp. 139-157. In: Robert, P.C., Rust, R.H. and Larson, W.E. (Eds). Proceeding of Soil Specific. Crop management john Wileyanadsonns, Ldt.
Boydas, M.G. & Turgut, N. (2007). Effect of vibration, roller design, and seed rates on the seed flow evenness of a studded feed roller. Applied Engineering in Agricultue, 23(4), 413-418. https://doi.org/10.13031/2013.23482.
Chen, Q. X. & Payne, P. A. (1995). Industrial applications of piezoelectric polymer transducers. Measurement Science and Technology, 6( 3), 249–267. https://doi.org/10.1088/0957-0233/6/3/001.
Coulthard, J., Byrne, B. & Yan, Y. (1991). Non-restrictive measurement of solids mass flow rate in pneumatic conveying systems. Measurement and Control, 24, 113–119.
Dursun, E. & Dursun, I. (2005). Some physical properties of caper seed. Biosystems Engineering, 92(2), 237-245. https://doi.org/10.1016/j.biosystemseng.2005.06.003.
Ghasemi, M.G., Mobli, H., Jafari, A., Keyhani, A.R., Soltanabadi, M.H. & Rafiee, S. (2008). Some physical properties of rough rice (Oryza Sativa L) Grain. Journal of Cereal Science, 47, 496-501. https://doi.org/10.1016/j.jcs.2007.05.014.
Gierz, L.& Paszkiewicz, B.K. (2020). PVDF piezoelectric sensors for seeds counting and coulter clogging detection in sowing process monitoring. Journal of Engineering, 1, 1-7. https://doi.org/10.1155/2020/2676725.
Goulden, C. H. & Mason, W.J. 1958. An electronic seed counter. Canadian Journal of Plant Science, 38(1), 84-87.
Huang, D., Jia, H., Qi, Y., Zhu, L. & Li, H. (2013). Seeding monitor system for planter based on polyvinylidence fluoride piezoelectric film. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 29(23), 15–22.
Hu, H.L., Xu, T.M., Hui, S.E. & Zhou, Q.L. (2006). A novel capacitive system for the concentration measurement of pneumatically conveyed pulverized fuel at power stations. Flow Measurement and Instrumentation, 17(2), 87-92. https://doi.org/10.1016/j.flowmeasinst.2005.11.001
Kabas, O., Yilmaz, E., Ozmerzi, A. & Akinci, I. (2007). Some physical and nutritional properties of cowpea seed (Vigna sinensis L.). Journal of Food Engineering, 79(4), 1405-1409. https://doi.org/10.1016/j.jfoodeng.2006.04.022.
Karayel, D. & Ozmerzi, A. (2002). Effect of tillage methods on sowing uniformity of maize. Canadian Biosystems Engineering, 44(2), 23-26.
Karimi, H., Navid, H. & Mahmoudi, A. (2015). Online laboratory evaluation of seeding-machine application by an acoustic technique. Spanish Journal of Agricultural Research, 13(1), 0202. https://doi.org/10.5424/sjar/2015131-6050.
Karimi, H., Navid, H., Besharati, B., Behfar, H. & Eskandari, I. (2017). A practical approach to comparative design of non-contact sensing techniques for seed flow rate detection. Computers and Electronics in Agriculture, 142, 165-172. https://doi.org/10.1016/j.compag.2017.08.027.
Klemme, K.A., Joseph, A., Schumacher, J.A. & Froehlich, D.P .(1992). Results and advantages of a spacially variable technology for crop yield. SAE International Journal of Commercial Vehicles, 101, 364-372.
Knepler, J. T. 1979. U.S. Patent No. 4,164,669. Washington, DC: U.S. Patent and Trademark Office.
Kumhala, F., Kroulik, M. & Prosek, V. (2007). Development and evaluation of forage yield measure sensors in a mowing-conditioning machine. Computers and Electronics in Agriculture, 58(2), 154–163. https://doi.org/10.1016/j.compag.2007.03.013.
Lee, W. S., Alchanatis, V., Yang, C., Hirafuji, M., Moshou, D. & Li, C. (2010). Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture, 74(1), 2–33. https://doi.org/10.1016/j.compag.2010.08.005.
Li, M., Wang, Y., Guo, H., Ding, F. & Yan, H. (2023). Evaluation of variable rate irrigation management in forage crops: Saving water and increasing water productivity. Agricultural Water Management, 275, 108020. https://doi.org/10.1016/j.agwat.2022.108020.
Liptak, b. (2003). Instrument Engineers' Handbook. Process Measurement and Analysis, 5th Edation,  America: CRC Press.
Liu,W., Hu, J., Zhao, X., Pan, H., Lakhiar, I.A. & Wang, W. (2019). Development and experimental analysis of an intelligent sensor for monitoring seed flow rate based on a seed flow reconstruction technique. Computers and Electronics in Agriculture, 164, 104899. https://doi.org/10.1016/j.compag.2019.104899.
Maleki , M.R., Mouazen, A.M., Ketelaere, B.D., Ramon, H. & De Baerdemaeker, J. (2008). On-the-go variable-rate phosphorus fertilisation based on a visible and near-infrared soil sensor. Biosystems Engineering, 99(1), 35-46. https://doi.org/10.1016/j.biosystemseng.2007.09.007.
Maleki, M.R., mouazen, A.M., Ramen, H. & De Baerdemaeker, J. (2007). Optimisation of soil VIS–NIR sensor-based variable rate application system of soil phosphorus. Soil and Tillage Research, 94(1), 239-250. https://doi.org/10.1016/j.still.2006.07.016.
Marcus, A. & Maletic, J. I. (2003). Recovering Documentation-to-Source-Code Traceability Links using Latent Semantic Indexing. in Proceedings 25th IEEE/ACM International Conference on Software Engineering (ICSE’03), Portland, OR, USA, 125-137. https://doi.org/10.1109/ICSE.2003.1201194.
Maung, C.O., Kawashima, D., Oshima. H., Tanaka, Y., Yamane, Y. & Takei, M. (2020). Particle volume flow rate measurement by combination of dual electrical capacitance tomography sensor and plug flow shape model. Powder Technology, 364, 310-320. https://doi.org/10.1016/j.powtec.2020.01.084
Mohammadi, F., Maleki, M.R. & Jalal Khodaei. (2022). Control of variable rate system of a rotary tiller based on real-time measurement of soil surface roughness. Soil and Tillage Research, 215, 105216. https://doi.org/10.1016/j.still.2021.105216.
Mohammadi, F., Maleki, M.R., Ranjbari, S. & Khodaei, j. (2020). On-line measurement of seed and fertilizer level in drills hopper using Infrared method. Journal of Researches in Mechanics of Agricultural Machinery, 9(2), 95-105. (In Persian).
Mohammadi, F., Mousazadeh, H. & Jafari, A. (2023). Online measurement of bulk solids mass flow rate based on centripetal force. Journal of Researches in Mechanics of Agricultural Machinery, 11(4), 10-20. (In Persian).
Mohsenin, N.N. (1986). Physical Properties of Plant and Animal Materials. Structure, Physical Characteristics and Mechanical Properties. Gordon and Breach Science Publishers, 31(7), 702-702. https://doi:10.1002/food.19870310724.
Mousazadeh, H., Tarabi, N., Taghizadeh-Tameh, J., Mohammadi, F. & Kiapei, A. (2023). Mass Flow Rate Measurement Based on Electrical Capacitance Tomography with Feasibility Application in Cereal Combines and Assessment of Discretization on Field Potential. Agricultural Mechanization, 8(1), 23-31. (In Persian). https://doi.org/10.22034/jam.2023.53762.1202
Norden, K.E. (1998). Handbook of Electronic Weighing. Wiley-VCH, 1st edition, 488 pp.
Reid, W. S., Buckley, D. J. & Mason, W. (1976). A Photoelectric seed counting detector. Applied Engineering in Agriculture, 21(2), 213-215. https://doi.org/10.1016/0021-8634(76)90077-9.
Riegler-Nurscher, P., Moitzi, G., Prankl, J., Huber, J., Karner, J., Wagentristl, H. & Vincze, M. (2020). Machine vision for soil roughness measurement and control of tillage machines during seedbed preparation. Soil & Tillage Research, 196, 104351. https://doi.org/10.1016/j.still.2019.104351.
Riegler-Nurscher, P., Moitzi, G., Prankl, J., Huber, J., Karner, J., Wagentristl, H. & Vincze, M. (2020). Machine vision for soil roughness measurement and control of tillage machines during seedbed preparation. Soil and Tillage Research, 196, 104351.
Seminara, L., Capurro, M., Cirillo, P., Cannata, G. & Valle, M. (2011). Electromechanical characterization of piezoelectric PVDF polymer films for tactile sensors in robotics applications. Sensors and Actuators A: Physical, 169(1), 49–58. https://doi.org/10.1016/j.sna.2011.05.004.
Soleimani, M., Vauhkonen, M., Yang, W., Peyton, A., Kim, B.S. & Ma. X. (2007). Dynamic imaging in electrical capacitance tomography and electromagnetic induction tomography using a Kalman filter. Measurement science and technology, 18, 3287-3294. https://iopscience.iop.org/article/10.1088/0957-0233/18/11/004
Singh, R.C., Singh, G. & Saraswat, D.C. (2005). Optimisation of Design and Operational Parameters of a Pneumatic Seed Metering Device for Planting Cottonseeds. Biosystems Engineering, 92(4), 429-438. https://doi.org/10.1016/j.biosystemseng.2005.07.002.
Tewari, V.K., Pareek, C.M., Lal, G., Dhruw, L.K. & Singh, N. (2020). Image processing based real-time variable-rate chemical spraying system for disease control in paddy crop. Artificial Intelligence in Agriculture, 4, 21-30. https://doi.org/10.1016/j.aiia.2020.01.002
Tarabi, N., Mousazadeh, H., Jafari, A., Taghizadeh-Tameh, J. & Kiapey, A. (2021). Developing and evaluation of an electrical impedance tomography system for measuring solid volumetric concentration in dredging scale. Flow Measurement and Instrumentation, 80, 101986. https://doi.org/10.1016/j.flowmeasinst.2021.101986
Tothill, I. E. (2001). Biosensors developments and potential applications in the agricultural diagnosis sector. Computers and Electronics in Agriculture, 30(1–32), 05–218. https://doi.org/10.1016/S0168-1699(00)00165-4.
Wagner, L.E. & Shrock, M.D. (1989). Yield determination using a pivoted auger flow sensor. American Society of Agricultural Engineers, 32(2), 409-413. https://doi.org/10.13031/2013.31018.
Wang , H., Gu, Z., Xu, J., Li, S., Qi, Z., Li, Y. & Zhou, J. (2022). Automatic variable rate fertilisation system for improved fertilisation uniformity in paddy fields. Biosystems Engineering, 219, 56-57. https://doi.org/10.1016/j.biosystemseng.2022.04.021
Xie, C., Zhang, D., Yang, L., Cui, T., He, X. & Du, Z. (2021). Precision seeding parameter monitoring system based on laser sensor and wireless serial port communication. Computers and Electronics in Agriculture, 190, 106429. https://doi.org/10.1016/j.compag.2021.106429
Xie, C., Zhang, D., Yang, L., Cui, T., Yu, T., Wang, D. & Xiao, T. (2021). Experimental analysis on the variation law of sensor monitoring accuracy under different seeding speed and seeding spacing. Computers and Electronics in Agriculture, 189, 106369.https://doi.org/10.1016/j.compag.2021.106369
Yatskul, A., Lemiere, J.-P. & Cointault, F. (2017). Influence of the divider head functioning conditions and geometry on the seed’s distribution accuracy of the air-seeder. Biosystems Engineering, 161, 120–134. https://doi.org/10.1016/j.biosystemseng.2017.06.015.
Zhao, Z., Li, Y., Chen, J. & Xu, J. (2011). Grain separation loss monitoring system in combine harvester.  Computers and Electronics in Agriculture, 76(2), 183-188. https://doi.org/10.1016/j.compag.2011.01.016.
Yu, H., Ding. Y., Fu, X. Liu, H., Liu, H., Jin, M., Yang, C. Liu, Z., Sun, G. & Dou, x. (2019). A solid fertilizer and seed application rate measuring system for a seedfertilizer drill machine. Computers and Electronics in Agriculture,162, 836-844. https://doi.org/10.1016/j.compag.2019.05.007
Zhang, P., Yang, Y., Huang, Z., Sun, J., Liao, Z., Wang, J. & Yang, Y. (2021). Machine learning assisted measurement of solid mass flow rate in horizontal pneumatic conveying by acoustic emission detection. Chemical Engineering Science, 229, 116083. https://doi.org/10.1016/j.ces.2020.116083
Zhang, X., Liu, J. & He, B. (2014). Magnetic Resonance Based Electrical Properties Tomography: A Review. IEEE Reviews In Biomedical Engineering, 7, 87-96. 10.1109/RBME.2013.2297206
Zheng, Y., Li, Y. & Liu, Q. (2007). Measurement of mass flow rate of particulate solids in gravity chute conveyor based on laser sensing array. Optics & Laser Technology, 39(2), 298-305. https://doi.org/10.1016/j.optlastec.2005.07.012Zheng, Y. & Liu, Q. (2011). Review of techniques for the mass flow rate measurement of pneumatically conveyed solids. Measurement, 44, 589-604.
Zou, J., Liu, C., Wang, H. & Wu, Z.P. (2020). Mass flow rate measurement of bulk solids based on microwave tomography and microwave Doppler methods. Powder Technology, 360, 112-119. https://doi.org/10.1016/j.powtec.2019.09.087