تشخیص تنش‌های غیر زیستی گیاه برنج با استفاده از یک زیست‌حسگر نوری هوشمند مبتنی بر نانوذرات طلا

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار- گروه مهندسی مکانیک بیوسیستم - دانشگاه علوم کشاورزی و منابع طبیعی گرگان

10.22059/ijbse.2024.380124.665559

چکیده

تشخیص اختصاصی نوع و شدت تنش‌های غیر زیستی گیاه به منظور انجام اقدامات به موقع به جلوگیری از کاهش عملکرد کمک می‌کند. این مطالعه روش جدیدی را برای تشخیص نوع و شدت تنش در گیاه برنج در شرایط شوری، خشکی و گرما به کمک بررسی ترکیبات microRNA معرفی می‌کند. در این پژوهش، غلظت هشت ترکیب microRNA در بافت گیاهان قرار گرفته تحت تنش‌های فوق به کمک یک زیست‌حسگر نوری مبتنی بر نانوذرات طلا اندازه‌گیری شد. اساس کار این زیست‌حسگر بر اساس هیبریدیزاسیون پراب-ترکیب هدف بود که در آن، اختلاط پراب/نانوذرات طلای پوشش داده شده با سیترات (ترکیب 1) و microRNA/نانوذرات پوشش داده شده با پلی‌اتیلن‌ایمین (ترکیب 2) منجر به تجمع نانوذرات و تغییر ویژگی‌های طیف‌سنجی نمونه می‌شد. در ادامه، از روش‌های یادگیری ماشین برای پیش‌بینی نوع و شدت تنش با داشتن این غلظت‌ها استفاده شد. نتایج نشان داد که ماشین بردار پشتیبان بهینه‌شده توسط الگوریتم ژنتیک با عملکرد مناسب و به ترتیب با ضرایب تبیین 94/0، 91/0 و 86/0 توانایی تشخیص سطح تنش شوری، خشکی و گرمای وارده به گیاهان برنج را داشت. در ادامه، نتایج انتخاب ویژگی مبتنی بر نظریه بازی‌های مشارکتی نشان داد که در میان ترکیبات microRNA مورد مطالعه، miRNA-156، miRNA-393، و miRNA-159 به ترتیب بیشترین سهم را در پیش‌بینی تنش‌های خشکی، شوری و گرما در گیاه برنج داشتند. نتایج تحقیق نشان می‌دهد که بررسی ترکیبات microRNA گیاه به کمک زیست‌حسگرهای نوری می‌تواند منجر به ویژگی‌های قابل اعتمادی برای تعیین شرایط رشد گیاهی و تنش‌های گیاه در مراحل اولیه ظهور شود.

کلیدواژه‌ها


عنوان مقاله [English]

Detecting abiotic stresses in rice plants using a smart optical biosensor based on gold nanoparticles

نویسنده [English]

  • Keyvan Asefpour Vakilian
Assistant Professor, Department of Biosystems Engineering,, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

 
The specific detection of the type and severity of plant abiotic stresses to take timely measures helps prevent yield reduction. This study introduces a new method to detect the type and severity of stress in rice plants under salinity, drought, and heat conditions by investigating microRNAs. The concentration of eight microRNAs in the tissue of plants subjected to salinity, drought, and heat conditions was measured with the help of an optical biosensor based on gold nanoparticles. The biosensor worked based on probe-target hybridization, in which the mixture of probe/citrate-capped gold nanoparticles (compound 1) and microRNA/polyethyleneimine-capped nanoparticles (compound 2) resulted in the aggregation of nanoparticles and changes in their spectroscopic properties. In the following, machine learning methods were used to predict the type and severity of stress using such concentrations. The results showed that the support vector machine optimized by the genetic algorithm was able to detect the severity of salinity, drought, and heat stress applied to rice plants with appropriate performance and with coefficients of determination of 0.94, 0.91, and 0.86, respectively. Then, the results of feature selection based on the cooperative game theory showed that among the microRNAs studied, miRNA-156, miRNA-393, and miRNA-159 had the largest contribution in predicting drought, salinity, and heat stresses in the rice plants, respectively. The findings of the research show that the examination of plant microRNAs with the help of optical biosensors can lead to reliable features for determining plant growth conditions and plant stresses in the early stage.

کلیدواژه‌ها [English]

  • genetic algorithm
  • machine learning
  • microRNA concentration
  • support vector machine

Detecting abiotic stresses in rice plants using a smart optical biosensor based on gold nanoparticles

EXTENDED ABSTRACT

Introduction

MicroRNAs are small non-coding molecules that are found in the cells of living organisms, affecting gene expression and, thus, proteins involved in physiological and biochemical processes. These compounds determine the response of plants toward biotic and abiotic stresses. Therefore, it seems that by measuring the concentration of such compounds, it is possible to predict the severity of the stress applied to the rice plants, which can significantly reduce the yield and increase its losses. The objectives of this study include using a biosensor based on the gold nanoparticle aggregation to collect data on microRNA concentrations in rice plants under stress, using machine learning algorithms for the specific detection of plant stress, and identifying the contribution of each microRNA to the efficient detection of stresses based on feature selection methods.

Material and methods

Rice seedlings were subjected to salinity (at six levels), drought (at six levels), and heat (at four levels) for seven days. The concentrations of miRNA-156, miRNA-159, miRNA-164, miRNA-169, miRNA-393, miRNA-395, miRNA402, and miRNA-528 were measured from the root and stem samples collected from the plants under stress. Due to the high number of samples and measurable compounds in this study, it was not possible to use time-consuming methods such as polymerase chain reaction. For this purpose, an optical biosensor based on probe-target hybridization was used. In this biosensor, the mixture of probe/gold nanoparticles capped with citrate and microRNA/nanoparticles capped with polyethyleneimine led to the aggregation of nanoparticles and a change in the spectroscopic characteristics of the sample. The artificial neural network, support vector machine, and decision tree were used as machine learning models to train the data. The genetic algorithm was used to optimize the hyperparameters of the methods.

Results and discussion

The most suitable results for predicting the level of stresses applied to rice seedlings were obtained by the support vector machine optimized by genetic algorithm, which was able to predict the level of salinity, drought, and heat with coefficients of determination equal to 0.94, 0.91, and 0.86, respectively. These results show that, as expected, the concentration of microRNAs changed toward various levels of stress. The genetic algorithm significantly increased the performance of the machines for efficient prediction of all three types of stresses. In general, the machines performed best and worst in predicting salinity and heat stresses, respectively. Based on the cooperative game theory, the Banzhaf power index was considered to determine the effects of the concentration of each microRNA in predicting stresses. Based on the values ​​obtained for the Banzhaf power index, miRNA-156, miRNA-393, and miRNA-159 exerted the greatest contribution in predicting drought, salinity, and heat stress in the studied rice plants, respectively.

Conclusion

The results of this research showed that for various levels of drought, salinity, and heat stresses, a microRNA optical biosensor equipped with the support vector machine optimized with meta-heuristic methods can find a relationship between the stress levels and the concentration of microRNAs. In this situation, it seems that by extracting microRNA data with the help of a portable spectroscopic device, it is no longer necessary to extract the morphological and physiological characteristics of the plant, which is usually time-consuming and requires the transfer of samples to well-equipped laboratories, to provide a reliable understanding of plant stress status. Furthermore, the proposed method has the ability to be implemented in Internet of Things (IoT) systems to move toward digital agriculture.

Al-Rawaf, H. A. (2019). Circulating microRNAs and adipokines as markers of metabolic syndrome in adolescents with obesity. Clinical Nutrition, 38(5), 2231–2238.
Aliferis, C., & Simon, G. (2024). Overfitting, underfitting and general model overconfidence and under-performance pitfalls and best practices in machine learning and AI. In Artificial intelligence and machine learning in health care and medical sciences: Best practices and pitfalls. edited by Simon, G., Aliferis, C. Cham: Springer International Publishing. 477–524.
Arif, N., Sharma, N. C., Yadav, V., Ramawat, N., Dubey, N. K., Tripathi, D. K., Chahan, D. K., & Sahi, S. (2019). Understanding heavy metal stress in a rice crop: toxicity, tolerance mechanisms, and amelioration strategies. Journal of Plant Biology, 62, 239–253.
Asefpour Vakilian, K. A. (2019). Gold nanoparticles-based biosensor can detect drought stress in tomato by ultrasensitive and specific determination of miRNAs. Plant Physiology and Biochemistry, 145, 195–204.
Asefpour Vakilian, K. (2020a). Determination of nitrogen deficiency-related microRNAs in plants using fluorescence quenching of graphene oxide nanosheets. Molecular and cellular probes, 52, 101576.
Asefpour Vakilian, K. (2020b). Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses. Scientific Reports, 10, 3041.
Asefpour Vakilian K. (2022). Optimization methods can increase the durability of smart electrochemical biosensors. In 8th Iranian Conference on Signal Processing and Intelligent Systems. Behshahr, Iran. December 28, 2022.
Asefpour Vakilian, K. (2023a). A smart electrochemical biosensor for arsenic detection in water. In 13th International Conference on Computer and Knowledge Engineering. Mashhad, Iran. November 27, 2023.
Asefpour Vakilian, K. (2023b). Emerging smart biosensors for the specific and ultrasensitive detection of plant abiotic stresses. In International Congress on Agricultural Mechanization and Energy in Agriculture. Antalya, Turkey. October 29, 2023.
Bajpai, P., & Kumar, M. (2010). Genetic algorithm–an approach to solve global optimization problems. Indian Journal of Computer Science and Engineering, 1(3), 199–206.
Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., Alotaibi, M., Al-Ashkar, I., & Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 10, 16975.
Behera, L. M., & Hembram, P. (2021). Advances on plant salinity stress responses in the post-genomic era: a review. Journal of Crop Science and Biotechnology, 24(2), 117–126.
Bzdok, D., Krzywinski, M., & Altman, N. (2017). Points of Significance: Machine learning: A primer. Nature Methods, 14(12), 1119–1120.
Chandar, A. G., Sivasankari, K., Lakshmi, S. L., Sugumaran, S., Kannadhasan, S., & Balakumar, S. (2024). An innovative smart agriculture system utilizing a deep neural network and embedded system to enhance crop yield. Multidisciplinary Science Journal, 6(5), 1–11.
Chandra, S., & Roychoudhury, A. (2020). Penconazole, paclobutrazol, and triacontanol in overcoming environmental stress in plants. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives. edited by Roychoudhury, A., & Tripathi, D. K. Hoboken: John Wiley & Sons. 510–34.
Chen, S. J., Huang, Y. F., Huang, C. C., Lee, K. H., Lin, Z. H., & Chang, H. T. (2008). Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosensors and Bioelectronics23(11), 1749–1753.
Chen, L., Fang, Y., Zhou, X., Zhang, M., Yao, R., & Tian, B. (2023). Magnetic DNA nanomachine for on-particle cascade amplification-based ferromagnetic resonance detection of plant MicroRNA. Analytical Chemistry, 95(12), 5411–5418.
Cui, L. G., Shan, J. X., Shi, M., Gao, J. P., Lin, H. X. (2014). The miR156 SPL 9 DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. The Plant Journal, 80, 1108–1117.
Das, B., Sen, A., Roy, S., Banerjee, O., & Bhattacharya, S. (2021). miRNAs: Tiny super-soldiers shaping the life of rice plants for facing “stress”-ful times. Plant Gene, 26, 100281.
Ding, Y., Chen, Z., & Zhu, C. (2011). Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). Journal of experimental botany, 62(10), 3563–3573.
Dorosti, N., Khatami, S. H., Karami, N., Taheri-Anganeh, M., Mahhengam, N., Rajabvand, N., Asadi, P., Movahedpour, A., & Ghasemi, H. (2023). MicroRNA biosensors for detection of gastrointestinal cancer. Clinica Chimica Acta, 541, 117245.
Esmaili, M., Aliniaeifard, S., Mashal, M., Vakilian, K. A., Ghorbanzadeh, P., Azadegan, B., Seif, M., & Didaran, F. (2021). Assessment of adaptive neuro-fuzzy inference system (ANFIS) to predict production and water productivity of lettuce in response to different light intensities and CO2 concentrations. Agricultural Water Management, 258, 107201.
Gao, P., Bai, X., Yang, L., Lv, D., Pan, X., Li, Y., Cai, H., Ji, W., Chen, Q., & Zhu, Y. (2011). osa-MIR393: a salinity-and alkaline stress-related microRNA gene. Molecular Biology Reports, 38, 237–242.
Gao, Z., Ma, C., Zheng, C., Yao, Y., & Du, Y. (2022). Advances in the regulation of plant salt-stress tolerance by miRNA. Molecular Biology Reports, 49(6), 5041–5055.
Ghosh, S., Adhikari, S., Adhikari, A., & Hossain, Z. (2022). Contribution of plant miRNAome studies towards understanding heavy metal stress responses: current status and future perspectives. Environmental and Experimental Botany, 194, 104705.
Gilani, A., Behbahani, L., Asl, J. H., & Azizi, A. (2022). Effect of parboil on quality and quantity of characteristics of three local rice cultivars of Khuzestan province. Journal of Innovation in Food Science & Technology, 13(4), 98.
Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L. R., Xu, G., Chao, D. Y., Li, J., Wang, P. Y., Qin, F., Li, J., Ding, Y., Shi, Y., Wang, Y., Yang, Y., Guo, Y., & Zhu, J. K. (2020). Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 63, 635–674.
Guy, C. (1999). Molecular responses of plants to cold shock and cold acclimation. Journal of Molecular Microbiology and Biotechnology, 1(2), 231–242.
Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15(8), 509–524.
Hakimian, F., Ghourchian, H., Sadat Hashemi, A., Arastoo, M. R., & Rad, M. B. (2018). Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Scientific reports8(1), 2943.
Hancer, E., Xue, B., & Zhang, M. (2018). Differential evolution for filter feature selection based on information theory and feature ranking. Knowledge-Based Systems, 140, 103–119.
Hashemi, A., Asefpour Vakilian, K., Khazaei, J., & Massah, J. (2014). An artificial neural network modeling for force control system of a robotic pruning machine. Journal of Information and Organizational Sciences, 38(1), 35–41.
Huang, S. Q., Xiang, A. L., Che, L. L., Chen, S., Li, H., Song, J. B., & Yang, Z. M. (2010). A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnology Journal, 8(8), 887–899.
Javidan, S. M., Banakar, A., Asefpour Vakilian, K., & Ampatzidis, Y. (2022) A feature selection method using slime mould optimization algorithm in order to diagnose plant leaf diseases. In 8th Iranian Conference on Signal Processing and Intelligent Systems. Behshahr, Iran. December 28, 2022.
Javidan, S. M., Banakar, A., Vakilian, K. A., & Ampatzidis, Y. (2023). Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning. Smart Agricultural Technology, 3, 100081.
Ji, X., Song, X., Li, J., Bai, Y., Yang, W., & Peng, X. (2007). Size control of gold nanocrystals in citrate reduction: the third role of citrate. Journal of the American Chemical Society129(45), 13939–13948.
Johnson, B. N., & Mutharasan, R. (2014). Biosensor-based microRNA detection: techniques, design, performance, and challenges. Analyst, 139(7), 1576–1588.
Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, 80, 8091–8126.
Kilasi, N. L., Singh, J., Vallejos, C. E., Ye, C., Jagadish, S. K., Kusolwa, P., & Rathinasabapathi, B. (2018). Heat stress tolerance in rice (Oryza sativa L.): identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Frontiers in Plant Science, 9, 1578.
Kim, E. R., Joe, C., Mitchell, R. J., & Gu, M. B. (2023). Biosensors for healthcare: Current and future perspectives. Trends in Biotechnology, 41(3), 374–395.
Kumar, S., Sharma, N., Sopory, S. K., & Sanan-Mishra, N. (2024). miRNAs and genes as molecular regulators of rice grain morphology and yield. Plant Physiology and Biochemistry, 207, 108363.
Lack, S. (2012). The effects of seed number per hill on grain yield and source-sink relations of three rice cultivars. African Journal of Agricultural Research, 7(1), 43–50.
Lekklar, C., Suriya-Arunroj, D., Pongpanich, M., Comai, L., Kositsup, B., Chadchawan, S., & Buaboocha, T. (2019). Comparative genomic analysis of rice with contrasting photosynthesis and grain production under salt stress. Genes, 10(8), 562.
Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017). Feature selection: A data perspective. ACM Computing Surveys, 50(6), 1–45.
Li, C., Nong, W., Zhao, S., Lin, X., Xie, Y., Cheung, M. Y., Xiao, Z., Wong, A. Y. P., Chan, T. F., Hui, J. H. L., & Lam, H. M. (2022). Differential microRNA expression, microRNA arm switching, and microRNA: long noncoding RNA interaction in response to salinity stress in soybean. BMC Genomics, 23(1), 65.
Li, M., & Yu, B. (2021). Recent advances in the regulation of plant miRNA biogenesis. RNA biology, 18(12), 2087–2096.
Li, J., Cupil-Garcia, V., Wang, H. N., Strobbia, P., Lai, B., Hu, J., Maiwald, M., Sumpf, B., Sun, T., Kemner, K. M., and Vo-Dinh, T. (2024). Plasmonics Nanorod Biosensor for In Situ Intracellular Detection of Gene Expression Biomarkers in Intact Plant Systems. Biosensors and Bioelectronics, 261, 116471.
Liu, Z., & Xu, H. (2014). Kernel parameter selection for support vector machine classification. Journal of Algorithms and Computational Technology, 8(2), 163–177.
Luo, P., Di, D., Wu, L., Yang, J., Lu, Y., & Shi, W. (2022). MicroRNAs are involved in regulating plant development and stress response through fine-tuning of TIR1/AFB-dependent auxin signaling. International Journal of Molecular Sciences, 23(1), 510.
Marabita, F., De Candia, P., Torri, A., Tegner, J., Abrignani, S., & Rossi, R. L. (2016). Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR. Briefings in Bioinformatics, 17(2), 204–212.
Massah, J., & Asefpour Vakilian, K. (2019). An intelligent portable biosensor for fast and accurate nitrate determination using cyclic voltammetry. Biosystems Engineering, 177, 49-58.
Meher, P. K., Begam, S., Sahu, T. K., Gupta, A., Kumar, A., Kumar, U., Rao, A. R., Singh, K. P., & Dhankher, O. P. (2022). ASRmiRNA: abiotic stress-responsive miRNA prediction in plants by using machine learning algorithms with pseudo K-tuple nucleotide compositional features. International Journal of Molecular Sciences, 23(3), 1612.
Mishra, S., Spaccarotella, K., Gido, J., Samanta, I., & Chowdhary, G. (2023). Effects of heat stress on plant-nutrient relations: An update on nutrient uptake, transport, and assimilation. International Journal of Molecular Sciences, 24(21), 15670.
Mohammadi, P., & Asefpour Vakilian, K. (2023). Machine learning provides specific detection of salt and drought stresses in cucumber based on miRNA characteristics. Plant Methods, 19, 123.
Moldovan, D., Spriggs, A., Yang, J., Pogson, B. J., Dennis, E. S., & Wilson, I. W. (2010). Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. Journal of Experimental Botany, 61(1), 165–177.
Mourya, D. T., Yadav, P. D., Mehla, R., Barde, P. V., Yergolkar, P. N., Kumar, S. R., Thakare, J. P., & Mishra, A. C. (2012). Diagnosis of Kyasanur forest disease by nested RT-PCR, real-time RT-PCR and IgM capture ELISA. Journal of Virological Methods, 186, 49–54.
Negahdary, M., & Angnes, L. (2022). Application of electrochemical biosensors for the detection of microRNAs (miRNAs) related to cancer. Coordination Chemistry Reviews, 464, 214565.
Noman, A., & Aqeel, M. (2017). miRNA-based heavy metal homeostasis and plant growth. Environmental Science and Pollution Research, 24, 10068–10082.
Pannakkong, W., Thiwa-Anont, K., Singthong, K., Parthanadee, P., & Buddhakulsomsiri, J. (2022). Hyperparameter tuning of machine learning algorithms using response surface methodology: A case study of ANN, SVM, and DBN. Mathematical Problems in Engineering, 2022, 8513719.
Patel, P., Yadav, K., Ganapathi, T. R., & Penna, S. (2019). Plant miRNAome: Cross talk in abiotic stressful times. In: Genetic enhancement of crops for tolerance to abiotic stress: Mechanisms and approaches. edited by Rajpal, V. R., Sehgal, D., Kumar, A., Raina, S. N. Cham: Springer. 25–52.
Pradhan, U. K., Meher, P. K., Naha, S., Rao, A. R., Kumar, U., Pal, S., & Gupta, A. (2023). ASmiR: a machine learning framework for prediction of abiotic stress–specific miRNAs in plants. Functional & Integrative Genomics, 23(2), 92.
Rudin, C., & Radin, J. (2019). Why are we using black box models in AI when we don’t need to? A lesson from an explainable AI competition. Harvard Data Science Review, 1(2), 1–10.
Sarkar, N. K., Kim, Y. K., & Grover, A. (2014). Coexpression network analysis associated with call of rice seedlings for encountering heat stress. Plant Molecular Biology, 84, 125–143.
Sarlaki, E., Paghaleh, A. S., Kianmehr, M. H., & Asefpour Vakilian, K. (2021). Valorization of lignite wastes into humic acids: Process optimization, energy efficiency and structural features analysis. Renewable Energy, 163, 105–122.
Schratz, P., Muenchow, J., Iturritxa, E., Richter, J., & Brenning, A. (2019). Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecological Modelling, 406, 109–120.
Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., & Weigel, D. (2005). Specific effects of microRNAs on the plant transcriptome. Developmental Cell, 8(4), 517–527.
Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and prediction. Shanghai Archives of Psychiatry, 27(2), 130.
Stief, A., Altmann, S., Hoffmann, K., Pant, B. D., Scheible, W. R., & Bäurle, I. (2014). Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. The Plant Cell, 26(4), 1792–1807.
Sun, X., Liu, Y., Li, J., Zhu, J., Chen, H., & Liu, X. (2012). Feature evaluation and selection with cooperative game theory. Pattern recognition, 45(8), 2992–3002.
Sun, J., Zhong, G., Huang, K., & Dong, J. (2018). Banzhaf random forests: Cooperative game theory based random forests with consistency. Neural Networks, 106, 20–29.
Sunkar, R., & Zhu, J. K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell, 16(8), 2001–2019.
Taratima, W., Chomarsa, T., & Maneerattanarungroj, P. (2022). Salinity stress response of rice (Oryza sativa L. cv. Luem Pua) calli and seedlings. Scientifica, 2022, 5616683.
Tran, H. V., & Piro, B. (2021). Recent trends in application of nanomaterials for the development of electrochemical microRNA biosensors. Microchimica Acta, 188(4), 128.
Turkan, I., Bor, M., Ozdemir, F., & Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 168, 223–231.
Turner, A. P. (2013). Biosensors: sense and sensibility. Chemical Society Reviews, 42, 3184–3196.
Várallyay, E., Burgyán, J., & Havelda, Z. (2008). MicroRNA detection by northern blotting using locked nucleic acid probes. Nature Protocols, 3(2), 190–196.
Varkonyi-Gasic, E., Gould, N., Sandanayaka, M., Sutherland, P., & MacDiarmid, R. M. (2010) Characterisation of miRNAs from apple (Malus domestica ‘Royal Gala’) vascular tissue and phloem sap. BMC Plant Biology, 10, 159.
Venkatesh, B., & Anuradha, J. (2019). A review of feature selection and its methods. Cybernetics and Information Technologies, 19(1), 3–26.
Wang, B., Sun, Y. F., Song, N., Wang, X. J., Feng, H., Huang, L. L., & Kang, Z. S. (2013). Identification of UV-B-induced microRNAs in wheat. Genetics and Molecular Research, 12(4), 4213–4221.
Wang, Y., Sun, F., Cao, H., Peng, H., Ni, Z., Sun, Q., & Yao, Y. (2012). TamiR159 directed wheat TaGAMYB cleavage and its involvement in another development and heat response. PLoS One, 7, e48445.
Yang, B., Tang, J., Yu, Z., Khare, T., Srivastav, A., Datir, S., & Kumar, V. (2019). Light stress responses and prospects for engineering light stress tolerance in crop plants. Journal of Plant Growth Regulation, 38, 1489–1506.
Yin, J. Q., Zhao, R. C., & Morris, K. V. (2008). Profiling microRNA expression with microarrays. Trends in Biotechnology, 26(2), 70–76.
Yoshida, S., Forno, D. A., & Cock, J. H. (1971). Laboratory manual for physiological studies of rice. Philippines: Los Baños Publishing.
Zen, K., & Zhang, C. Y. (2012). Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Medicinal Research Reviews, 32(2), 326–348.
Zhang, F., Yang, J., Zhang, N., Wu, J., & Si, H. (2022). Roles of microRNAs in abiotic stress response and characteristics regulation of plant. Frontiers in Plant Science, 13, 919243.
Zhou, L., Liu, Y., Liu, Z., Kong, D., Duan, M., & Luo, L. (2010). Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. Journal of Experimental Botany, 61(15), 4157–4168.