Al-Rawaf, H. A. (2019). Circulating microRNAs and adipokines as markers of metabolic syndrome in adolescents with obesity. Clinical Nutrition, 38(5), 2231–2238.
Aliferis, C., & Simon, G. (2024). Overfitting, underfitting and general model overconfidence and under-performance pitfalls and best practices in machine learning and AI. In Artificial intelligence and machine learning in health care and medical sciences: Best practices and pitfalls. edited by Simon, G., Aliferis, C. Cham: Springer International Publishing. 477–524.
Arif, N., Sharma, N. C., Yadav, V., Ramawat, N., Dubey, N. K., Tripathi, D. K., Chahan, D. K., & Sahi, S. (2019). Understanding heavy metal stress in a rice crop: toxicity, tolerance mechanisms, and amelioration strategies. Journal of Plant Biology, 62, 239–253.
Asefpour Vakilian, K. A. (2019). Gold nanoparticles-based biosensor can detect drought stress in tomato by ultrasensitive and specific determination of miRNAs. Plant Physiology and Biochemistry, 145, 195–204.
Asefpour Vakilian, K. (2020a). Determination of nitrogen deficiency-related microRNAs in plants using fluorescence quenching of graphene oxide nanosheets. Molecular and cellular probes, 52, 101576.
Asefpour Vakilian, K. (2020b). Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses. Scientific Reports, 10, 3041.
Asefpour Vakilian K. (2022). Optimization methods can increase the durability of smart electrochemical biosensors. In 8th Iranian Conference on Signal Processing and Intelligent Systems. Behshahr, Iran. December 28, 2022.
Asefpour Vakilian, K. (2023a). A smart electrochemical biosensor for arsenic detection in water. In 13th International Conference on Computer and Knowledge Engineering. Mashhad, Iran. November 27, 2023.
Asefpour Vakilian, K. (2023b). Emerging smart biosensors for the specific and ultrasensitive detection of plant abiotic stresses. In International Congress on Agricultural Mechanization and Energy in Agriculture. Antalya, Turkey. October 29, 2023.
Bajpai, P., & Kumar, M. (2010). Genetic algorithm–an approach to solve global optimization problems. Indian Journal of Computer Science and Engineering, 1(3), 199–206.
Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., Alotaibi, M., Al-Ashkar, I., & Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 10, 16975.
Behera, L. M., & Hembram, P. (2021). Advances on plant salinity stress responses in the post-genomic era: a review. Journal of Crop Science and Biotechnology, 24(2), 117–126.
Bzdok, D., Krzywinski, M., & Altman, N. (2017). Points of Significance: Machine learning: A primer. Nature Methods, 14(12), 1119–1120.
Chandar, A. G., Sivasankari, K., Lakshmi, S. L., Sugumaran, S., Kannadhasan, S., & Balakumar, S. (2024). An innovative smart agriculture system utilizing a deep neural network and embedded system to enhance crop yield. Multidisciplinary Science Journal, 6(5), 1–11.
Chandra, S., & Roychoudhury, A. (2020). Penconazole, paclobutrazol, and triacontanol in overcoming environmental stress in plants. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives. edited by Roychoudhury, A., & Tripathi, D. K. Hoboken: John Wiley & Sons. 510–34.
Chen, S. J., Huang, Y. F., Huang, C. C., Lee, K. H., Lin, Z. H., & Chang, H. T. (2008). Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosensors and Bioelectronics, 23(11), 1749–1753.
Chen, L., Fang, Y., Zhou, X., Zhang, M., Yao, R., & Tian, B. (2023). Magnetic DNA nanomachine for on-particle cascade amplification-based ferromagnetic resonance detection of plant MicroRNA. Analytical Chemistry, 95(12), 5411–5418.
Cui, L. G., Shan, J. X., Shi, M., Gao, J. P., Lin, H. X. (2014). The miR156 SPL 9 DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. The Plant Journal, 80, 1108–1117.
Das, B., Sen, A., Roy, S., Banerjee, O., & Bhattacharya, S. (2021). miRNAs: Tiny super-soldiers shaping the life of rice plants for facing “stress”-ful times. Plant Gene, 26, 100281.
Ding, Y., Chen, Z., & Zhu, C. (2011). Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). Journal of experimental botany, 62(10), 3563–3573.
Dorosti, N., Khatami, S. H., Karami, N., Taheri-Anganeh, M., Mahhengam, N., Rajabvand, N., Asadi, P., Movahedpour, A., & Ghasemi, H. (2023). MicroRNA biosensors for detection of gastrointestinal cancer. Clinica Chimica Acta, 541, 117245.
Esmaili, M., Aliniaeifard, S., Mashal, M., Vakilian, K. A., Ghorbanzadeh, P., Azadegan, B., Seif, M., & Didaran, F. (2021). Assessment of adaptive neuro-fuzzy inference system (ANFIS) to predict production and water productivity of lettuce in response to different light intensities and CO2 concentrations. Agricultural Water Management, 258, 107201.
Gao, P., Bai, X., Yang, L., Lv, D., Pan, X., Li, Y., Cai, H., Ji, W., Chen, Q., & Zhu, Y. (2011). osa-MIR393: a salinity-and alkaline stress-related microRNA gene. Molecular Biology Reports, 38, 237–242.
Gao, Z., Ma, C., Zheng, C., Yao, Y., & Du, Y. (2022). Advances in the regulation of plant salt-stress tolerance by miRNA. Molecular Biology Reports, 49(6), 5041–5055.
Ghosh, S., Adhikari, S., Adhikari, A., & Hossain, Z. (2022). Contribution of plant miRNAome studies towards understanding heavy metal stress responses: current status and future perspectives. Environmental and Experimental Botany, 194, 104705.
Gilani, A., Behbahani, L., Asl, J. H., & Azizi, A. (2022). Effect of parboil on quality and quantity of characteristics of three local rice cultivars of Khuzestan province. Journal of Innovation in Food Science & Technology, 13(4), 98.
Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L. R., Xu, G., Chao, D. Y., Li, J., Wang, P. Y., Qin, F., Li, J., Ding, Y., Shi, Y., Wang, Y., Yang, Y., Guo, Y., & Zhu, J. K. (2020). Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 63, 635–674.
Guy, C. (1999). Molecular responses of plants to cold shock and cold acclimation. Journal of Molecular Microbiology and Biotechnology, 1(2), 231–242.
Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15(8), 509–524.
Hakimian, F., Ghourchian, H., Sadat Hashemi, A., Arastoo, M. R., & Rad, M. B. (2018). Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Scientific reports, 8(1), 2943.
Hancer, E., Xue, B., & Zhang, M. (2018). Differential evolution for filter feature selection based on information theory and feature ranking. Knowledge-Based Systems, 140, 103–119.
Hashemi, A., Asefpour Vakilian, K., Khazaei, J., & Massah, J. (2014). An artificial neural network modeling for force control system of a robotic pruning machine. Journal of Information and Organizational Sciences, 38(1), 35–41.
Huang, S. Q., Xiang, A. L., Che, L. L., Chen, S., Li, H., Song, J. B., & Yang, Z. M. (2010). A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnology Journal, 8(8), 887–899.
Javidan, S. M., Banakar, A., Asefpour Vakilian, K., & Ampatzidis, Y. (2022) A feature selection method using slime mould optimization algorithm in order to diagnose plant leaf diseases. In 8th Iranian Conference on Signal Processing and Intelligent Systems. Behshahr, Iran. December 28, 2022.
Javidan, S. M., Banakar, A., Vakilian, K. A., & Ampatzidis, Y. (2023). Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning. Smart Agricultural Technology, 3, 100081.
Ji, X., Song, X., Li, J., Bai, Y., Yang, W., & Peng, X. (2007). Size control of gold nanocrystals in citrate reduction: the third role of citrate. Journal of the American Chemical Society, 129(45), 13939–13948.
Johnson, B. N., & Mutharasan, R. (2014). Biosensor-based microRNA detection: techniques, design, performance, and challenges. Analyst, 139(7), 1576–1588.
Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, 80, 8091–8126.
Kilasi, N. L., Singh, J., Vallejos, C. E., Ye, C., Jagadish, S. K., Kusolwa, P., & Rathinasabapathi, B. (2018). Heat stress tolerance in rice (Oryza sativa L.): identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Frontiers in Plant Science, 9, 1578.
Kim, E. R., Joe, C., Mitchell, R. J., & Gu, M. B. (2023). Biosensors for healthcare: Current and future perspectives. Trends in Biotechnology, 41(3), 374–395.
Kumar, S., Sharma, N., Sopory, S. K., & Sanan-Mishra, N. (2024). miRNAs and genes as molecular regulators of rice grain morphology and yield. Plant Physiology and Biochemistry, 207, 108363.
Lack, S. (2012). The effects of seed number per hill on grain yield and source-sink relations of three rice cultivars. African Journal of Agricultural Research, 7(1), 43–50.
Lekklar, C., Suriya-Arunroj, D., Pongpanich, M., Comai, L., Kositsup, B., Chadchawan, S., & Buaboocha, T. (2019). Comparative genomic analysis of rice with contrasting photosynthesis and grain production under salt stress. Genes, 10(8), 562.
Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017). Feature selection: A data perspective. ACM Computing Surveys, 50(6), 1–45.
Li, C., Nong, W., Zhao, S., Lin, X., Xie, Y., Cheung, M. Y., Xiao, Z., Wong, A. Y. P., Chan, T. F., Hui, J. H. L., & Lam, H. M. (2022). Differential microRNA expression, microRNA arm switching, and microRNA: long noncoding RNA interaction in response to salinity stress in soybean. BMC Genomics, 23(1), 65.
Li, M., & Yu, B. (2021). Recent advances in the regulation of plant miRNA biogenesis. RNA biology, 18(12), 2087–2096.
Li, J., Cupil-Garcia, V., Wang, H. N., Strobbia, P., Lai, B., Hu, J., Maiwald, M., Sumpf, B., Sun, T., Kemner, K. M., and Vo-Dinh, T. (2024). Plasmonics Nanorod Biosensor for In Situ Intracellular Detection of Gene Expression Biomarkers in Intact Plant Systems. Biosensors and Bioelectronics, 261, 116471.
Liu, Z., & Xu, H. (2014). Kernel parameter selection for support vector machine classification. Journal of Algorithms and Computational Technology, 8(2), 163–177.
Luo, P., Di, D., Wu, L., Yang, J., Lu, Y., & Shi, W. (2022). MicroRNAs are involved in regulating plant development and stress response through fine-tuning of TIR1/AFB-dependent auxin signaling. International Journal of Molecular Sciences, 23(1), 510.
Marabita, F., De Candia, P., Torri, A., Tegner, J., Abrignani, S., & Rossi, R. L. (2016). Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR. Briefings in Bioinformatics, 17(2), 204–212.
Massah, J., & Asefpour Vakilian, K. (2019). An intelligent portable biosensor for fast and accurate nitrate determination using cyclic voltammetry. Biosystems Engineering, 177, 49-58.
Meher, P. K., Begam, S., Sahu, T. K., Gupta, A., Kumar, A., Kumar, U., Rao, A. R., Singh, K. P., & Dhankher, O. P. (2022). ASRmiRNA: abiotic stress-responsive miRNA prediction in plants by using machine learning algorithms with pseudo K-tuple nucleotide compositional features. International Journal of Molecular Sciences, 23(3), 1612.
Mishra, S., Spaccarotella, K., Gido, J., Samanta, I., & Chowdhary, G. (2023). Effects of heat stress on plant-nutrient relations: An update on nutrient uptake, transport, and assimilation. International Journal of Molecular Sciences, 24(21), 15670.
Mohammadi, P., & Asefpour Vakilian, K. (2023). Machine learning provides specific detection of salt and drought stresses in cucumber based on miRNA characteristics. Plant Methods, 19, 123.
Moldovan, D., Spriggs, A., Yang, J., Pogson, B. J., Dennis, E. S., & Wilson, I. W. (2010). Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. Journal of Experimental Botany, 61(1), 165–177.
Mourya, D. T., Yadav, P. D., Mehla, R., Barde, P. V., Yergolkar, P. N., Kumar, S. R., Thakare, J. P., & Mishra, A. C. (2012). Diagnosis of Kyasanur forest disease by nested RT-PCR, real-time RT-PCR and IgM capture ELISA. Journal of Virological Methods, 186, 49–54.
Negahdary, M., & Angnes, L. (2022). Application of electrochemical biosensors for the detection of microRNAs (miRNAs) related to cancer. Coordination Chemistry Reviews, 464, 214565.
Noman, A., & Aqeel, M. (2017). miRNA-based heavy metal homeostasis and plant growth. Environmental Science and Pollution Research, 24, 10068–10082.
Pannakkong, W., Thiwa-Anont, K., Singthong, K., Parthanadee, P., & Buddhakulsomsiri, J. (2022). Hyperparameter tuning of machine learning algorithms using response surface methodology: A case study of ANN, SVM, and DBN. Mathematical Problems in Engineering, 2022, 8513719.
Patel, P., Yadav, K., Ganapathi, T. R., & Penna, S. (2019). Plant miRNAome: Cross talk in abiotic stressful times. In: Genetic enhancement of crops for tolerance to abiotic stress: Mechanisms and approaches. edited by Rajpal, V. R., Sehgal, D., Kumar, A., Raina, S. N. Cham: Springer. 25–52.
Pradhan, U. K., Meher, P. K., Naha, S., Rao, A. R., Kumar, U., Pal, S., & Gupta, A. (2023). ASmiR: a machine learning framework for prediction of abiotic stress–specific miRNAs in plants. Functional & Integrative Genomics, 23(2), 92.
Rudin, C., & Radin, J. (2019). Why are we using black box models in AI when we don’t need to? A lesson from an explainable AI competition. Harvard Data Science Review, 1(2), 1–10.
Sarkar, N. K., Kim, Y. K., & Grover, A. (2014). Coexpression network analysis associated with call of rice seedlings for encountering heat stress. Plant Molecular Biology, 84, 125–143.
Sarlaki, E., Paghaleh, A. S., Kianmehr, M. H., & Asefpour Vakilian, K. (2021). Valorization of lignite wastes into humic acids: Process optimization, energy efficiency and structural features analysis. Renewable Energy, 163, 105–122.
Schratz, P., Muenchow, J., Iturritxa, E., Richter, J., & Brenning, A. (2019). Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecological Modelling, 406, 109–120.
Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., & Weigel, D. (2005). Specific effects of microRNAs on the plant transcriptome. Developmental Cell, 8(4), 517–527.
Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and prediction. Shanghai Archives of Psychiatry, 27(2), 130.
Stief, A., Altmann, S., Hoffmann, K., Pant, B. D., Scheible, W. R., & Bäurle, I. (2014). Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. The Plant Cell, 26(4), 1792–1807.
Sun, X., Liu, Y., Li, J., Zhu, J., Chen, H., & Liu, X. (2012). Feature evaluation and selection with cooperative game theory. Pattern recognition, 45(8), 2992–3002.
Sun, J., Zhong, G., Huang, K., & Dong, J. (2018). Banzhaf random forests: Cooperative game theory based random forests with consistency. Neural Networks, 106, 20–29.
Sunkar, R., & Zhu, J. K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell, 16(8), 2001–2019.
Taratima, W., Chomarsa, T., & Maneerattanarungroj, P. (2022). Salinity stress response of rice (Oryza sativa L. cv. Luem Pua) calli and seedlings. Scientifica, 2022, 5616683.
Tran, H. V., & Piro, B. (2021). Recent trends in application of nanomaterials for the development of electrochemical microRNA biosensors. Microchimica Acta, 188(4), 128.
Turkan, I., Bor, M., Ozdemir, F., & Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 168, 223–231.
Turner, A. P. (2013). Biosensors: sense and sensibility. Chemical Society Reviews, 42, 3184–3196.
Várallyay, E., Burgyán, J., & Havelda, Z. (2008). MicroRNA detection by northern blotting using locked nucleic acid probes. Nature Protocols, 3(2), 190–196.
Varkonyi-Gasic, E., Gould, N., Sandanayaka, M., Sutherland, P., & MacDiarmid, R. M. (2010) Characterisation of miRNAs from apple (Malus domestica ‘Royal Gala’) vascular tissue and phloem sap. BMC Plant Biology, 10, 159.
Venkatesh, B., & Anuradha, J. (2019). A review of feature selection and its methods. Cybernetics and Information Technologies, 19(1), 3–26.
Wang, B., Sun, Y. F., Song, N., Wang, X. J., Feng, H., Huang, L. L., & Kang, Z. S. (2013). Identification of UV-B-induced microRNAs in wheat. Genetics and Molecular Research, 12(4), 4213–4221.
Wang, Y., Sun, F., Cao, H., Peng, H., Ni, Z., Sun, Q., & Yao, Y. (2012). TamiR159 directed wheat TaGAMYB cleavage and its involvement in another development and heat response. PLoS One, 7, e48445.
Yang, B., Tang, J., Yu, Z., Khare, T., Srivastav, A., Datir, S., & Kumar, V. (2019). Light stress responses and prospects for engineering light stress tolerance in crop plants. Journal of Plant Growth Regulation, 38, 1489–1506.
Yin, J. Q., Zhao, R. C., & Morris, K. V. (2008). Profiling microRNA expression with microarrays. Trends in Biotechnology, 26(2), 70–76.
Yoshida, S., Forno, D. A., & Cock, J. H. (1971). Laboratory manual for physiological studies of rice. Philippines: Los Baños Publishing.
Zen, K., & Zhang, C. Y. (2012). Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Medicinal Research Reviews, 32(2), 326–348.
Zhang, F., Yang, J., Zhang, N., Wu, J., & Si, H. (2022). Roles of microRNAs in abiotic stress response and characteristics regulation of plant. Frontiers in Plant Science, 13, 919243.
Zhou, L., Liu, Y., Liu, Z., Kong, D., Duan, M., & Luo, L. (2010). Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. Journal of Experimental Botany, 61(15), 4157–4168.