پهنه‌بندی زبری زمین با هدف تعیین مناطق مستعد نصب توربین بادی با استفاده از سنجش از دور ماهواره‌ای-مطالعه موردی: شهرستان کیاشهر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده علوم کشاورزی، دانشگاه گیلان، گیلان، ایران.

2 گروه مهندسی بیوسیستم، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

3 گروه مهندسی بیوسیستم، دانشکده علوم کشاورزی، دانشگاه گیلان، گیلان، ایران

چکیده

پایان‌پذیری سوخت‌های فسیلی، مشکلات زیست‌محیطی و تغییر اقلیم، توسعه انرژی‌های تجدید‌پذیر به‌ویژه انرژی باد را ضروری می‌سازد. چالش اصلی در توسعه انرژی بادی انتخاب محل مناسب برای نیروگاه است که زبری زمین نقش مهمی دارد. این پژوهش با هدف اولویت‌بندی مناطق مستعد از نظر زبری زمین با استفاده از سنجش از دور در کیاشهر انجام شد. نتایج طبقه‌بندی کاربری اراضی توسط الگوریتم SVM بین سال‌های 2000 تا 2020 نشان‌دهنده تغییرات 66/2957 هکتاری زمین‌های منطقه بود. برای تهیه نقشه زبری زمین از نقشه‌های پیش‌بینی شده توسط مدل سلول‌های خودکار مارکوف برای سال 2030 استفاده شد تا نتایج برای سال‌های آینده کاربردی باشد. نقشه شبیه‌سازی شده بر اساس اطلاعات طول زبری ویرینگا شبکه‌بندی شد تا نقشه‌های طول زبری و کلاس‌های زبری تولید شود. نتایج نشان داد 84 سلول معادل 98/1363 هکتار در دو کلاس اول و دوم دارای بهترین پتانسیل برای احداث نیروگاه بادی هستند. همچنین، نقشه‌های کاربری اراضی در سال 2030 نشان داد که بخش زیادی از منطقه دارای کاربری زراعی و بیشتر تحت کشت برنج است. این نواحی تنها در 2 ماه از سال دارای طول زبری 25/0 متر بوده و در بقیه سال طول زبری‌های 1/0 متر (کلاس 4) و 03/0 متر (کلاس 3) را تجربه می‌کنند. در مجموع، با در نظر گرفتن طول زبری تا 25/0 متر، 552 سلول معادل 36/8963 هکتار برای احداث نیروگاه بادی مناسب تشخیص داده شد. یافته‌های این تحقیق می‌تواند به شناسایی مناطق مستعد احداث نیروگاه بادی و مدل‌سازی سرعت باد در نزدیکی هاب توربین‌های بادی کمک کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Zoning land surface roughness for wind turbine installation using satellite remote sensing: a case study of kiashahr county

نویسندگان [English]

  • Arash Mesri 1
  • Fatemeh Rahimi-Ajdadi 2
  • Iraj Bagheri 3
1 Department of Biosystems Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
2 Dept. of Biosystems Engineering Faculty of Agricultural Sciences University of Guilan Rasht, Iran
3 Department of Biosystems Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
چکیده [English]

The depletion of fossil fuels, environmental issues, and climate change make the development of renewable energy, especially wind energy, essential. The main challenge in developing wind energy is selecting suitable locations for power plants, where land roughness plays a significant role. This study aimed to prioritize suitable areas based on land roughness using remote sensing in Kiashahr. Land use classification results by the SVM algorithm from 2000 to 2020 showed changes in 2,957.66 hectares of the region. Predicted maps from Markov Cellular Automata models for 2030 were used to ensure practical application of results for future years. The simulated map was gridded based on Wieringa roughness length data to generate maps of roughness length and classes. Results showed that 84 cells, equivalent to 1,363.98 hectares, in the first and second classes have the best potential for wind power plants. Additionally, land use maps for 2030 indicated that a large part of the region is used for agriculture, mostly rice cultivation. These areas have a roughness length of 0.25 m for only two months of the year, and for the rest of the year, they have a roughness length of 0.1 m (class 4) and 0.03 m (class 3). Overall, considering a roughness length of up to 0.25 meters, 552 cells, equivalent to 8,963.36 hectares, were identified as suitable for wind power plants. The findings of this research can help identify suitable areas for wind power plant construction and assist in modeling wind speed near the hub of tall wind turbines.

کلیدواژه‌ها [English]

  • Classification
  • Landsat
  • Markov Cellular Automata
  • Roughness Length
  • Wind Power Plant

Zoning land surface roughness for wind turbine installation using satellite remote sensing: a case study of kiashahr county

EXTENDED ABSTRACT

 

Introduction

Energy is considered one of the key factors in economic advancement and wealth creation for countries. Due to the scarcity of fossil fuel resources and environmental damage, government support policies for investment in renewable energy have become increasingly important. Wind energy, as a clean and inexhaustible source, is a suitable option for exploitation. However, one of the major challenges in wind energy development is selecting the appropriate location for establishing power plants, where land roughness plays a very significant role. Unfortunately, in Iran, due to the vast reserves of oil and gas, there has been less attention given to renewable energies, and despite the high potential in this field, sufficient development has not occurred. This research aims to prioritize suitable areas in terms of land roughness using satellite images within the Kiashahr study area.

Materials and methods

In this research, land use changes in the region between 2000 and 2020 were detected using supervised classification with the Support Vector Machine (SVM) algorithm. Then, the CA-Markov model was used to simulate land use changes for the year 2030, and the predicted map was utilized to create maps of roughness length and roughness classes. The predicted map was gridded based on Wieringa roughness length information to produce zoning maps of roughness length and roughness classes.

Results and discussion

Between 2000 and 2020, forests decreased by 553.55 hectares. Contributing factors to this reduction include forest encroachment, excessive tree cutting, and forest destruction for villa construction. Residential areas expanded by 809.94 hectares between 2000 and 2020. Most of these changes resulted from the conversion of agricultural land edges into residential areas, driven by rural migration, population growth, and increased demand for new housing. This construction boom in the region has led to an increase in roughness length. Based on the results obtained from roughness maps, 84 cells, equivalent to 1363.98 hectares, in Kiashahr fall into classes 1 and 2. These areas are very suitable in terms of roughness for establishing a wind energy site. Most of these cells are concentrated in the northern and eastern parts of the region, exposed to coastal and northern winds, making them the highest priority areas for establishing a wind energy site, irrespective of other influencing parameters. Additionally, 10666.89 hectares of Kiashahr are agricultural lands, of which 5277.34 hectares have suitable roughness potential for installing wind turbines. These areas experience a roughness length of 0.25 meters for only two months of the year, while the rest of the year they experience roughness lengths of 0.1 meters (class 4) and 0.03 meters (class 3). Overall, considering a roughness length of up to 0.25 meters, 552 cells, equivalent to 8963.36 hectares, have been identified as suitable for establishing a wind power plant.

Conclusion

The findings of this research showed that using classification algorithms and modeling methods, large areas can be studied for the potential of wind power plants. This method not only identifies suitable areas for wind farm construction for decision-makers but also serves as a database for modeling wind speed near the hubs of tall wind turbines, which require roughness as an input parameter.

Ayodele, T., & Ogunjuyigbe, A. (2015). Mitigation of wind power intermittency: Storage technology approach. Renewable and sustainable energy reviews, 44, 447-456. doi:https://doi.org/10.1016/j.rser.2014.12.034
Ayodele, T., & Ogunjuyigbe, A. (2016). Wind energy potential of Vesleskarvet and the feasibility of meeting the South African׳ s SANAE IV energy demand. Renewable and sustainable energy reviews, 56, 226-234. doi:https://doi.org/10.1016/j.rser.2015.11.053
Baban, S. M., & Parry, T. (2001). Developing and applying a GIS-assisted approach to locating wind farms in the UK. Renewable Energy, 24(1), 59-71. doi:https://doi.org/10.1016/S0960-1481(00)00169-5
Baležentis, T., & Zeng, S. (2013). Group multi-criteria decision making based upon interval-valued fuzzy numbers: an extension of the MULTIMOORA method. Expert Systems with Applications, 40(2), 543-550. doi:https://doi.org/10.1016/j.eswa.2012.07.066
Bañuelos-Ruedas, F., Angeles-Camacho, C., & Rios-Marcuello, S. (2010). Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights. Renewable and sustainable energy reviews, 14(8), 2383-2391. doi:https://doi.org/10.1016/j.rser.2010.05.001
Carvalho, D., Rocha, A., Santos, C. S., & Pereira, R. (2013). Wind resource modelling in complex terrain using different mesoscale–microscale coupling techniques. Applied Energy, 108, 493-504. doi:https://doi.org/10.1016/j.apenergy.2013.03.074
Dale, S. (2021). BP statistical review of world energy. BP Plc, London, United Kingdom, 16-34.
Danish Wind Industry Association. (2003). The Roughness Rose. Retrieved from http://www.xn--drmstrre-64ad.dk/wp-content/wind/miller/windpower%20web/en/tour/wres/rrose.htm
Đurišić, Ž., & Mikulović, J. (2012). A model for vertical wind speed data extrapolation for improving wind resource assessment using WAsP. Renewable Energy, 41, 407-411. doi:https://doi.org/10.1016/j.renene.2011.11.016
Eastman, J. R. (2003). IDRISI Kilimanjaro: guide to GIS and image processing (Vol. 328). Clark University Worcester: Clark lab.
Gkeka-Serpetsidaki, P., & Tsoutsos, T. (2021). Sustainable site selection of offshore wind farms using GIS-based multi-criteria decision analysis and analytical hierarchy process. Case study: Island of Crete (Greece). In Low Carbon Energy Technologies in Sustainable Energy Systems (pp. 329-342): Elsevier.
Gorsevski, P. V., Cathcart, S. C., Mirzaei, G., Jamali, M. M., Ye, X., & Gomezdelcampo, E. (2013). A group-based spatial decision support system for wind farm site selection in Northwest Ohio. Energy Policy, 55, 374-385. doi:https://doi.org/10.1016/j.enpol.2012.12.013
Guo, X., Zhang, X., Du, S., Li, C., Siu, Y. L., Rong, Y., & Yang, H. (2020). The impact of onshore wind power projects on ecological corridors and landscape connectivity in Shanxi, China. Journal of Cleaner Production, 254, 120075. doi:https://doi.org/10.1016/j.jclepro.2020.120075
IEA. (2015). World Outlook Energy 2015. Paris: IEA.
Inman, M. (2011). Planting Wind Energy on Farms May Help Crops, Say Researchers. Retrieved from https://www.nationalgeographic.com/science/article/111219-wind-turbines-help-crops-on-farms
IRENA. (2021). Renewable capacity statistics 2021 International Renewable Energy Agency (IRENA). Abu Dhabi.
Lettau, H. (1969). Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description. Journal of Applied Meteorology (1962-1982), 8(5), 828-832.
Liu, J., Gao, C. Y., Ren, J., Gao, Z., Liang, H., & Wang, L. (2018). Wind resource potential assessment using a long term tower measurement approach: A case study of Beijing in China. Journal of Cleaner Production, 174, 917-926. doi:https://doi.org/10.1016/j.jclepro.2017.10.347
Lukač, N., Štumberger, G., & Žalik, B. (2017). Wind resource assessment using airborne LiDAR data and smoothed particle hydrodynamics. Environmental Modelling & Software, 95, 1-12. doi:https://doi.org/10.1016/j.envsoft.2017.05.006
Mortensen, N. G., Rathmann, O., & Nielsen, M. (2008). WAsP 9 course notes. Technical University of Denmark: Risø National Laboratory.
Murthy, K., & Rahi, O. (2017). A comprehensive review of wind resource assessment. Renewable and sustainable energy reviews, 72, 1320-1342. doi:https://doi.org/10.1016/j.rser.2016.10.038
Naghinezhad, A., Saeidi, M. S., Norouzi, M., & Faridi, M. (2006). Contribution to the vascular and bryophyte flora as well as habitat diversity of the boujagh national park, n. Iran. 5, 100-125.
Nayyar, Z. A., & Ali, A. (2020). Roughness classification utilizing remote sensing techniques for wind resource assessment. Renewable Energy, 149, 66-79. doi:https://doi.org/10.1016/j.renene.2019.12.044
Panwar, N., Kaushik, S., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and sustainable energy reviews, 15(3), 1513-1524. doi:https://doi.org/10.1016/j.rser.2010.11.037
Sefeedpari, P., Keyhani, A., Pishgar Komleh, S. H., Khanali, M., & Akram, A. (2016). Evaluating the potential of wind energy generation through statistical analysis of wind characteristics – case study: Eqlid county of fars province. iranian journal of biosystems engineering (iranian journal of agricultural sciences), 47(3), 469-483. Retrieved from https://www.sid.ir/en/journal/ViewPaper.aspx?ID=545210 (in persion)
Tiseo, I. (2021). Carbon dioxide emissions in 2010 and 2020, by select country (in million metric tons). Retrieved from https://www.statista.com/statistics/270499/co2-emissions-in-selected-countries/
Troen, I., & Petersen, E. L. (1989). European wind atlas: Risø National Laboratory.
Van Haaren, R., & Fthenakis, V. (2011). GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State. Renewable and sustainable energy reviews, 15(7), 3332-3340.
Wieringa, J. (1992). Updating the Davenport roughness classification. Journal of Wind Engineering and Industrial Aerodynamics, 41(1-3), 357-368. doi:https://doi.org/10.1016/0167-6105(92)90434-C
Wieringa, J., & Van der Veer, P. (1976). Nederlandse windstations 1971-1974: KNMI.
world weather online, w. ( 2024). Annual Weather Averages. Retrieved from https://www.worldweatheronline.com/kiashahr-weather-averages/gilan/ir.aspx
Zeynali, B., & Azimi, A. (2017). Evaluation of wind energy potential in the north-west of iran by using fuzzy algorithm. JOURNAL OF REGIONAL PLANNING, 6(24), 73-87. Retrieved from https://www.sid.ir/en/journal/ViewPaper.aspx?ID=522679 (in persion)
Zhang, F., Sha, M., Wang, G., Li, Z., & Shao, Y. (2017). Urban Aerodynamic Roughness Length Mapping Using Multitemporal SAR Data. Advances in Meteorology. doi:https://doi.org/10.1155/2017/8958926