کاربرد الگوریتم‌ خوشه‌‌بندی فازی و تصاویر ابر‌‌‌‌طیفی به منظور اصالت‌‌سنجی برنج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکتری، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی دانشگاه شهرکرد، شهرکرد، ایران

2 دانشیار گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

3 استادیار، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران .

4 دانشیار، گروه داروشناسی_سم‌شناسی، دانشکده داروسازی دانشگاه شهید بهشتی ، تهران تهران

چکیده

برنج یک محصول حیاتی و راهبردی است که به عنوان منبع اصلی غذایی مورد استفاده قرار می‌‌گیرد. تقاضای بالا برای خرید و مصرف برنج، منجر به تقلب در این محصول در سطح جهانی می‌شود. از این رو روشی غیر‌مخرب و سریع برای احراز اصالت برنج نیاز است. برنج هاشمی که به عنوان برنج گران قیمت و با کیفیت بالای بازار ایران معروف است با برنج‌های همچون ندا و شیرودی که از لحاظ شکل بسیار شبیه ولی از لحاظ کیفیت و قیمت پایین‌تر از آن هستند، ترکیب می‌شود. در این پژوهش از تصویر‌‌برداری ابر‌‌‌طیفی همراه با الگوریتم خوشه‌‌بندی فازی برای ارزیابی تقلب در نمونه‌‌های برنج هاشمی استفاده شد. ابتدا به منظور کاهش ابعاد داده‌‌ها روش تجزیه و تحلیل مولفه‌های اصلی بر روی داده‌‌های پیش‌‌پردازش شده به‌وسیله روش‌های اصلاح پراکندگی ضربی و ساویتزکی-گولای اعمال شد. سپس الگوریتم خوشه‌‌بندی بدون نظارت فازی با استفاده از طول موج کامل طیف (1000-400 نانومتر) به خوبی توانست نمونه اصلی را از نمونه‌‌های تقلبی جدا کند. همچنین نمودار عضویت فازی نمونه‌‌‌های اصلی و تقلبی و اختلاط 5 درصد تا 50 درصد را به خوبی از هم جدا کرد و درستی روش فازی را تایید کرد. بنابراین، سامانه تصویر‌‌برداری ابر‌‌‌طیفی همراه با الگوریتم‌‌‌های بدون نظارت فازی را می‌‌توان به عنوان روشی مطمئن و خارج از آزمایشگاه برای اصالت‌‌سنجی سریع برنج هاشمی و امکان‌سنجی وجود تقلب در آن را استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of fuzzy clustering algorithm and hyperspectral images for rice authentication

نویسندگان [English]

  • Mahsa Edris 1
  • Mahdi Ghasemi-Varnamkhasti 2
  • sajad Kiani 3
  • Hassan Yazdanpanah 4
  • Zahra Izadi 2
1 Ph.D. student, Mechanical Engineering of Biosystems Department, Faculty of Agriculture, Shahrekord University, Shahrekord,, Iran
2 Associate Professor, Mechanical Engineering of Biosystems Department, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
3 Assistant Professor, Biosystems Engineering Department, Faculty of Agriculture, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran
4 Associate Professor, Toxicology and Pharmacology Dept., School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
چکیده [English]

Rice is a vital and strategic product that is used as a major food source. The high demand for purchasing and consuming rice leads to the adulteration of this product globally. Hence, a non-destructive and rapid method is needed to verify the authenticity of rice. Hashemi rice, a high-priced and high-quality rice in the market, is combined with rice such as Neda and Shiroudi, which are very similar in shape but lower in quality and price than Hashemi rice. This study used hyperspectral imaging (HSI) coupled with a fuzzy clustering algorithm to assess adulteration in Hashemi rice samples. First, to reduce the data's dimensionality, the principal component analysis method was applied to the preprocessed data using the multiplicative dispersion correction and Savitzky-Golay methods. Then, the fuzzy unsupervised clustering algorithm was applied using the whole spectrum wavelength (400-1000 nm). It was able to separate the original sample from the adulterated samples well. Also, the fuzzy membership diagram separated the original and self-adulterated samples, mixing 5% to 50%, confirming the correctness and capability of the fuzzy method. Therefore, the HSI system with fuzzy unsupervised algorithms can be used as a reliable and out-of-laboratory method for rapid rice authenticity evaluation.

کلیدواژه‌ها [English]

  • clustering
  • fraud
  • non-destructive
  • pre-processing

EXTENDED ABSTRACT

Introduction

After wheat, rice is the second strategic crop in the world and is one of the main sources of dietary fiber, fat, protein, and other rare nutrients. Starch, protein, and fat are the main components of rice grain. Due to the high rice demand, this product is very vulnerable to adulteration at the global level. Considering the increasing scale and nature of adulteration, using reliable and fast methods to deal with rice adulteration is necessary. Fast, non-destructive, and non-contact hyperspectral imaging (HSI) method is a combination of imaging and spectroscopic technologies. With this method, spatial and spectral information can be obtained simultaneously for each point of the rice sample. This study aims to develop the HSI method and the clustering method to investigate the ability of a fast and non-destructive method for authenticating and predicting the percentage of Iranian rice adulteration.

Materials and methods

In this research, a model was developed to detect rice adulteration by HSI device along with the fuzzy clustering method. HSI is a non-destructive and fast method and in the wavelength range of 400 to 1000 nm, all original (Hashmi) and adulterated (Shiroudi and Neda) samples and combinations of fake rice with Hashemi rice from 5 to 50% were scanned. Then they were pre-processed using MSC and SG algorithms and the best wavelengths were selected and checked using evolutionary wavelength selection. Finally, using the FCM method, a model was presented to detect adulteration in rice.

Results and discussion

The results showed that the clustering method (fuzzy) together with the HSI system (as a non-destructive, fast, and accurate system) for predicting adulteration in rice samples shows satisfactory results. PCA after applying MSC + SG pre-processing, three samples of Hashemi, Shiroudi, Neda and are well separated from each other and can be identified. PC1, PC2, and PC3 after MSC + SG pre-processing for Hashemi, Shiroudi, and Neda cultivars were calculated as 60, 17 and 7%, respectively, with a total explained variance of 84% which was distributed by three PC1, PC2, and PC3. Then, after PCA, the pre-processed spectra were used for the C-means fuzzy clustering model. In the fuzzy clustering results, the original sample (in green color) and the fake sample (in red color) can be seen, and the fuzzy membership chart was used to confirm the results and further analysis. Two Hashmi rice samples (original) in green color and the Neda sample and its counterfeits (counterfeit) in red color (100 pixels or the number of first samples) belong to original and counterfeit clusters with high membership degree (almost complete). After the amount of 100 samples (100-400), two samples of Hashemi and Neda are mixed, which proves the combination of these two samples (from 5% to 50%). Fuzzy results in the full wavelength of its transparency over the selected wavelength.

Conclusion

Results proved that the HSI system coupled with the fuzzy clustering method can satisfactorily evaluate the rice authenticity. The fuzzy membership graph can predict adulteration in rice samples well.

Credit authorship contribution statement

Mahsa Edris: Writing – original draft, Methodology, Data curation, Software, Formal analysis.

Mahdi Ghasemi Varnamkhasti: Review and edit, conceptualize, supervise, and manage project administration.

Sajad Kiani: Writing – review and editing, Formal analysis, Investigation, Data curation, Validation.

Hasan Yazdanpanah: Supervision, Project administration, Methodology, Resources.

Zahra Izadi: Supervise, project administration, methodology, and resources.

Data Availability Statement

Data available on request from the authors. All the data used in this original research are presented throughout the text and in the form of Tables and Figures.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Acknowledgments

The authors extend their sincere appreciation to Shahrekord University, Sari University of Agricultural Sciences and Natural Resources, Rice Research Center of Iran, and Food and Drug Administration for their support throughout this project.

Conflict of interest

The author declares no conflict of interest.

Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4), 433-459.
Adán, J. G., & Wilfrido, G. F. (2015). Automatic clustering using natureinspired metaheuristics: A survey. Appl. Soft Comput. http://dx. doi. org/10.1016/j. asoc1.‏
Aznan, A., Gonzalez Viejo, C., Pang, A., & Fuentes, S. (2022). Rapid detection of fraudulent rice using low-cost digital sensing devices and machine learning. Sensors22(22), 8655.
Edris, M., Ghasemi-Varnamkhasti, M., Kiani, S., Yazdanpanah, H., & Izadi, Z. (2024). Identifying the authenticity and geographical origin of rice by analyzing hyperspectral images using unsupervised clustering algorithms. Journal of Food Composition and Analysis, 125, 105737.
ElMasry, G., & Sun, D.-W. (2010). Principles of hyperspectral imaging technology. In Hyperspectral imaging for food quality analysis and control (pp. 3-43). Elsevier.
Faqeerzada, M. A., Akter, T., Aline, U., Pahlawan, M. F. R., & Cho, B. K. (2023). Application of Hyperspectral Imaging for Rapid and Nondestructive Detection of Paraffine-Contaminated Rice. In BIO Web of Conferences (Vol. 80, p. 01001). EDP Sciences.
Fathi, N., Nabipour, A. (2019). Methods of determining the purity and quality of rice varieties. Journal of crop production, publications of the country's rice research institute (in Persian).
Ghasemi-Varnamkhasti, M., Mohtasebi, S. S., Rodriguez-Mendez, M. L., Lozano, J., Razavi, S. H., & Ahmadi, H. (2011). Potential application of electronic nose technology in brewery. Trends in Food Science & Technology, 22(4), 165-174.‏
He, X., Feng, X., Sun, D., Liu, F., Bao, Y., & He, Y. (2019). Rapid and nondestructive measurement of rice seed vitality of different years using near-infrared hyperspectral imaging. Molecules24(12), 2227.
Izadi, Z., & Kiani, S. Authenticity Identification of Pomegranate Molasses Using Hyperspectral Imaging System Coupled with Automatic Clustering by Artificial Bee Colony. Available at SSRN 4423331.
Kheiralipour, K., & Jayas, D. S. (2024). Current and future applications of hyperspectral imaging in agriculture, nature and food. Trends in Technical & Scientific Research7(2), 1-9.
Kiani, S., Azimifar, Z., & Kamgar, S. (2010). Wavelet-based crop detection and classification. In 2010 18th Iranian Conference on Electrical Engineering (pp. 587-591). IEEE.
Kiani, S., Van Ruth, S.M., Minaei, S. (2018). Hyperspectral imaging, a non-contact and non-destructive technique in aromatic/medicinal plant products industry: current status and potential future applications. Computers and Electronics in Agriculture, 152: 9-18.
Le Nguyen Doan, D., Nguyen, Q. C., Marini, F., & Biancolillo, A. 2021. Authentication of rice (Oryza sativa L.) using near-infrared spectroscopy combined with different chemometric classification strategies. Applied Sciences, 11(1), 362.
Li, T., Zhan, Z. H., Xu, J. C., Yang, Q., & Ma, Y. Y. (2022). A binary individual search strategy-based bi-objective evolutionary algorithm for high-dimensional feature selection. Information Sciences, 610, 651-673.
Liew, K. T., Pui, L. P., & Solihin, M. I. (2020, December). Feasibility of fraud detection in rice using a handheld near-infrared spectroscopy. In AIP Conference Proceedings (Vol. 2306, No. 1). AIP Publishing.
Liu, Y., Li, Y., Peng, Y., Yang, Y., & Wang, Q. (2020). Detection of fraud in high‐quality rice by near‐infrared spectroscopy. Journal of food science, 85(9), 2773-2782.‏
McGrath, T. F., Shannon, M., Chevallier, O. P., Ch, R., Xu, F., Kong, F., ... & Elliott, C. T. (2021). Food Fingerprinting: Using a two-tiered approach to monitor and mitigate food fraud in rice. Journal of AOAC International104(1), 16-28.
Miao, A., Zhuang, J., Tang, Y., He, Y., Chu, X., & Luo, S. (2018). Hyperspectral image based variety classification of waxy maize seeds by the t-SNE model and procrustes analysis. Sensors , 18(12), 4391.‏
Nargesi, M. H., Kheiralipour, K., & Jayas, D. S. (2024). Classification of different wheat flour types using hyperspectral imaging and machine learning techniques. Infrared Physics & Technology142, 105520.
Pedrycz, W. (2021). Fuzzy clustering. An Introduction to Computing with Fuzzy Sets: Analysis, Design, and Applications, 125-145.
Rahimzadeh, H., Sadeghi, M., Mireei, S. A., & Ghasemi-Varnamkhasti, M. (2022). Unsupervised modelling of rice aroma change during ageing based on electronic nose coupled with bio-inspired algorithms. Biosystems Engineering216, 132-146.
Sampaio, P. S., Soares, A., Castanho, A., Almeida, A. S., Oliveira, J., & Brites, C. (2018). Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms. Food Chemistry242, 196-204.
Sampaio, P. S., Castanho, A., Almeida, A. S., Oliveira, J., & Brites, C. (2020). Identification of rice flour types with near-infrared spectroscopy associated with PLS-DA and SVM methods. European food research and technology246, 527-537.
Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8), 1627-1639.
Seo, Y., Lee, A., Kim, B., & Lim, J. (2020). Classification of rice and starch flours by using multiple hyperspectral imaging systems and chemometric methods. Applied Sciences, 10(19), 6724.
Shannon, M., Ratnasekhar, C.H., McGrath, T.F., Kapil, A.P. and Elliott, C.T., (2021). A two-tiered system of analysis to tackle rice fraud: The Indian Basmati study. Talanta , 225, p.122038.
Shaw, G., & Manolakis, D. (2002). Signal processing for hyperspectral image exploitation. IEEE Signal processing magazine, 19(1), 12-16.
Siripatrawan, U., Makino, Y., Kawagoe, Y., & Oshita, S. (2011). Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. Talanta, 85(1), 276-281.
Teye, E., Amuah, C. L., McGrath, T., & Elliott, C. (2019). Innovative and rapid analysis for rice authenticity using hand-held NIR spectrometry and chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 217, 147-154.
Theodoridis, S., Pikrakis, A., Koutroumbas, K., & Cavouras, D. (2010). Introduction to pattern recognition: a matlab approach. Academic Press.‏
Van Haute, Sam., Nikkhah, A., Malavi, D., Kiani, S. 2023. Prediction of essential oil content in spearmint (Mentha spicata) via near-infrared hyperspectral imaging and chemometrics. Scientific Reports, 13(1), 4261.
Weng, S., Tang, P., Yuan, H., Guo, B., Yu, S., Huang, L., & Xu, C. (2020). Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 234, 118237.‏