ارزیابی انحراف ربات سمپاش خودکار خورشیدی از مسیر آموزش داده شده در سرعت‌ها و سطوح متفاوت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک بیوسیستم، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

2 استادیار گروه مهندسی مکانیک بیوسیستم، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 دانشیار گروه مهندسی مکانیک بیوسیستم، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

10.22059/ijbse.2025.393592.665594

چکیده

   یکی از شاخه‌های علم مهندسی، رباتیک است که طراحی، ساخت، راه‌اندازی و کاربرد ربات‌ها توسط سیستم کامپیوتری، کنترل، عکس‌العمل حسگرها و پردازش اطلاعات را شامل می‌شود. هدف نهایی کاربرد ربات‌ها در کشاورزی، افزایش سرعت، دقت و ظرافت در مراحل کاشت، داشت و برداشت محصول است. هدف کلی از پژوهش حاضر، ارزیابی انحراف ربات سمپاش خودکار خورشیدی مورد استفاده در باغ‌ها از مسیر آموزش داده ‌شده است. بدین منظور پس از آموزش مسیر توسط مدل YOLO v8 بهینه‌سازی شده به ربات سمپاش خودکار خورشیدی، آزمون‌هایی با درنظرگرفتن 2 متغیر ورودی شامل 3 نوع سطح (آسفالت، بتنی و خاکی دارای سنگریزه) و 3 سرعت پیشروی (1، 2 و 3 کیلومتر بر ساعت) انجام گرفته و میزان انحراف ربات از مسیر آموزش داده شده برحسب سانتی‌متر به عنوان متغیر خروجی اندازه‌گیری شد. نتایج نشان داد که مدل YOLO v8 بهینه‌سازی شده، با دقت و قابلیت تعمیم بالای خود، برای کاربردهای عملی همچون ناوبری ربات خودکار در محیط‌های باغی مناسب است. سرعت پیشروی، نوع سطح و اثر متقابل آن‌ها بر میزان انحراف ربات از مسیر آموزش داده شده معنی‌داری بودند به گونه‌ای که ربات در سرعت 3 کیلومتر بر ساعت و جاده خاکی دارای سنگریزه، بیشترین (41/21 سانتی‌متر) و در سرعت 1 کیلومتر بر ساعت و سطح آسفالت، کمترین (29/4 سانتی‌متر) میزان انحراف را داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of deviation of solar-powered autonomous sprayer robot from the trained path at different speeds and surfaces

نویسندگان [English]

  • Alireza Ahmadlou 1
  • mohammad askari 2
  • Davood kalantari 3
1 MSc student of Biosystems Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 Assistant Professor of Agricultural Machinery-Faculty of Agricultural Engineering- Sari Agricultural Sciences and Natural Resources University
3 Associate Professor of Biosystems Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده [English]

   Robotics is a branch of engineering science that includes the design, construction, operation, and use of robots by computer systems, control, sensor feedback, and information processing. The ultimate goal of using robots in agriculture is to increase speed, accuracy, and precision in the stages of planting, tending, and harvesting crops. The overall goal of the present study is to evaluate the deviation of an automated solar sprayer robot used in gardens from the trained path. For this purpose, after training the path using the optimized YOLO v8 model for the solar-powered automatic sprayer robot, tests were conducted considering 2 input variables including 3 types of surfaces (asphalt, concrete, and gravel soil) and 3 forward speeds (1, 2, and 3 km/h), and the amount of deviation of the robot from the trained path was measured as the output variable. The results showed that the optimized YOLO v8 model, with its high accuracy and generalizability, is suitable for practical applications such as autonomous robot navigation in garden environments. Both factors of forward speed and surface type had a significant effect on the amount of deviation of the robot from the trained path, such that the robot had the highest amount of deviation at high speed (3 km/h) and uneven road surface (dirt road with gravel) and the lowest amount of deviation at low speed (1 km/h) and smooth surface (asphalt).

کلیدواژه‌ها [English]

  • Garden sprayer
  • smart route detection
  • robotic
  • routing
  • YOLO v8

EXTENDED ABSTRACT

Introduction

The growing global demand for food, coupled with the need to support the emergence of technologies that can meet environmental standards as well as promote efficiency and healthy working environments, poses a major challenge for agriculture. Agricultural land is limited and can only be expanded slightly. Precision spraying represents an innovative approach that can help farmers spray only when needed, using the right amount of chemicals. Precision spraying can help meet regulatory requirements in terms of worker health, environmental sustainability, and food safety and quality. The best solution to this problem is to carry out pesticide spraying without human intervention and use a robotic system in agriculture. Agricultural robots are used to work in greenhouse and garden environments and play a very important role in agricultural activities. According to the survey, no research has been conducted so far on evaluating the deviation of an automated solar sprayer robot from the trained path at different levels and speeds.

Materials and Methods

The solar-powered automatic sprayer robot was equipped with accessories such as a chassis, wheels, electric motor, gearbox, solar panel, and power storage battery, etc. Field tests were conducted on two factors: surface type and forward speed. For this purpose, after training the route using the optimized YOLO v8 model for the solar-powered automatic sprayer robot, tests were conducted considering two input variables including three surface types (asphalt, concrete, and gravel soil) and three forward speeds (1, 2, and 3 km/h), and the amount of deviation of the robot from the trained route was measured as the output variable. The robot's deviation (in centimeters) from the original path was calculated with an assumed width of 50 centimeters.

Results and Discussion

Using morphological processing and thresholding methods, road lines were extracted and the upper and lower edge points of the road were determined using the contours of the largest white areas. Finally, red lines were drawn as the side lines of the road to identify the outer areas of the route. A yellow line was also drawn as the center line of the road as a navigation guide. The processed output images show that Gabor filters help identify and separate the road from the background by detecting edges and road structures. This filter also highlights the road lines and distinguishes them from other parts of the image, which is very important for robot navigation on uneven and varied paths. The YOLO model was used to identify road areas and create masks required for more accurate processing. The results showed that high speed and rough road surface are the two main factors in increasing the robot's deviation from the path. Analysis of the results of the YOLO v8 model in identifying garden paths indicates its high performance in accuracy, recall, and reduction of false positive and negative errors. The optimized YOLO v8 model, with its high accuracy and generalizability, showed very good performance in the navigation of the sprayer robot and is very suitable for practical applications such as automatic navigation in garden environments.

Conclusion

Image processing using Gabor filters and morphological processing methods helped improve the accuracy of the model and was able to distinguish the features of the paths well. Comparison of the results with previous research shows that the new model has significant improvements over other methods and is suitable for practical applications in the field of automatic navigation and garden path recognition. These findings can be useful for optimizing robot guidance algorithms in different environmental conditions and speeds.

Author Contributions

Conceptualization, A.A. and M.A.; methodology, A.A.; software, D.K.; validation, M.A., formal analysis, D.K.; investigation, M.A.; resources, A.A.; data curation, M.A.; writing—original draft preparation, M.A.; writing—review and editing, D.K.; visualization, A.A.; supervision, M.A.; project administration, M.A.; funding acquisition, M.A. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Data available on request from the authors.

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Bechar, A., & Vigneault, C. (2017). Agricultural robots for field operations. Part 2: Operations and systems. Biosystems engineering, 153, 110-128. https://doi.org/10.1016/j.biosystemseng.2016.11.004.
Cantelli, L., Bonaccorso, F., Longo, D., Donato Melita, C., Schillaci, G., & Muscato, G. (2019). A small versatile electrical robot for autonomous spraying in agriculture. AgriEngineering, 1(3), 391-402. https://doi.org/10.3390/agriengineering1030029.
Devi, K. G., Kumar C, S., & Balasubramanian, K. (2022). A survey on the design of autonomous and semi autonomous pesticide sprayer robot. El-Cezeri Journal of Science and Engineering, 9(1), 371-381. https://doi.org/10.31202/ecjse.1005808.
Han, J.h., Park, C.H., Kwon, J.H., Lee, J., Kim, T.S., & Jang, Y.Y. (2020). Performance evaluation of autonomous driving control algorithm for a crawler-type agricultural vehicle based on low-cost multi-sensor fusion positioning. Applied Sciences, 10(13), 4667. https://doi.org/10.3390/app10134667.
Han, J.h., Park, C.H., Jang, Y.Y., Gu, J.D., & Kim, C.Y. (2021). Performance evaluation of an autonomously driven agricultural vehicle in an orchard environment. Sensors, 22(1), 114. https://doi.org/10.3390/s22010114.
Heidari, A. (2019). Design, construction and evaluation of greenhouse sprayer robot. MSc thesis. Hamedan: Bou Ali Sina University. 91p. (in persian).
Hejazipour, H., Massah, J., Asefpour-vakilian, K., Sariani, M., Chegini, Gh. (2021). Design, manufacture and evaluation of automatic spraying mechanism in order to increase productivity. Agricultural Engineering (Scientific Journal of Agriculture), 44(1), 1-19. (in persian). https://doi.org/10.22055/agen.2021.34892.1586.
Kassim, A.M., Termezai, M.F.N.M., Jaya, A.K.R.A., Azahar, A.H., Sivarao, S., Jafar, H.I., & Aras, M.S.M. (2020). Design and development of autonomous pesticide sprayer robot for fertigation farm. International Journal of Advanced Computer Science and Applications, 11(2), 545-551. https://doi.org/10.14569/IJACSA.2020.0110269
Khodayari, A., Manavi zade, N., & Ahmadi kermanshahi, M. (2010). Design, construction and intelligent control of a mobile robot for path following process. 13th Iranian Electrical Engineering Student Conference, Tehran. (in persian).
Kurdi, M.M., & Elzein, I.A. (2022). Trajectory and Motion for Agricultural Robot. 2022 International Conference on Decision Aid Sciences and Applications (DASA). IEEE. https://doi.org/10.1109/DASA54658.2022.9765282.
Li, Y., Sun, H., Liu, D., Xu, J., & Wang, M. (2019). Autonomous Navigation and Path Tracking Control on Field Roads in Hilly Areas. Journal of Sensors, 9(3), 1-15. https://doi.org/10.1155/2019/6738594.
Masoodi, H. (2015). Robotics in the greenhouses. The 9th Congress of Iranian Horticultural Sciences. Shahid Chamran University, Ahvaz, Iran. (in persian).
Masoodi, H., Omid, M., Alimardani, R., Mohtasebi, S.S., & Bagheri Sjooraki, S. (2010). A Laboratory Study of Ultrasonic Sensors to Determine Position and Orientation of Mobile Robots for Greenhouse Applications. Iran Journal of biosystems Engineering, 41(1), 69-79. (in persian).
Masoudi, H., Alimardani, R., Omid, M., Mohtasebi, S.S., & Bagheri Sjooraki, S. (2011). Design, fabrication and evaluation of a mobile robot for spraying in greenhouses. Journal of Agricultural Engineering Research, 12(2), 87-100. (in persian).
Meshram, A.T., Vanalkar, A.V., Kalambe, K.B., & Badar, A. M. (2022). Pesticide spraying robot for precision agriculture: A categorical literature review and future trends. Journal of Field Robotics, 39(2), 153-171. https://doi.org/10.1002/rob.22043.
Mosallanejad, H., Minaei, S., Borghei, A.M., & Behfar, F. (2018). Design and construction of a dedicated greenhouse sprayer robot and its performance testing. The 4th National Conference on Modern Sciences and Technologies of Iran, Tehran. (in persian).
Ozgul, E., & Celik, U. (2018). Design and implementation of semi-autonomous anti-pesticide spraying and insect repellent mobile robot for agricultural applications. The 5th International Conference on Electrical and Electronic Engineering (ICEEE) (pp. 233-237). IEEE.
Rafigh, A., Mashhadi Mighani, H., Kalantari, D., & Khorasani, M. (2013). Greenhouse spraying automation using mobile robots. Mechanical Sciences in agricultural machinery, 1(1), 65-73. (in persian).
Riley, B., & Siemsen-Newman, L. (2003). “Health Hazards Posed to Pesticide Applicators”, Northwest Coalition for Alternatives to Pesticides, 17-24.
Sánchez-Hermosilla, J., González, R., Rodríguez, F., & Donaire, J.G. (2013). Mechatronic description of a laser autoguided vehicle for greenhouse operations. Sensors, 13(1), 769-784. https://doi.org/10.3390/s130100769.  
Ünal, İ., & Topakci, M. (2015). Design of a Remote-controlled and GPS-guided Autonomous Robot for Precision Farming. International Journal of Advanced Robotic Systems, 12(2), 180-194. https://doi.org/10.5772/62059.
Wang, H., & Noguchi, N. (2016). Autonomous maneuvers of a robotic tractor for farming. The IEEE/SICE International symposium on system integration (SII). IEEE.
Xiang, Y., Du, J., Geng, D., & Jin, Ch. (2018). Development of an automatically guided rice transplanter using RTK-GNSS and IMU. IFAC-PapersOnLine, 51-17, 374-378. https://doi.org/10.1016/j.ifacol.2018.08.193.
Zhang, T., Zhou, W., Meng, F., & Li, Zh. (2019). Efficiency analysis and improvement of an intelligent transportation system for the application in greenhouse. Book Chapter, Intelligent Transportation Systems, ISBN: 978-3-0365-0506-0, 233-257.