برنامه‌ریزی و زمان‌بندی پروژۀ مکانیزاسیون تولید جو با استفاده از مدل شبکه‌ای پرت: مطالعۀ موردی استان البرز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی ماشین‏های کشاورزی دانشکدۀ مهندسی و فناوری کشاورزی پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 دانشیار گروه مهندسی ماشین‏های کشاورزی دانشکدۀ مهندسی و فناوری کشاورزی پردیس کشاورزی و منابع طبیعی دانشگاه تهران

3 استاد گروه مهندسی ماشین‏های کشاورزی دانشکدۀ مهندسی و فناوری کشاورزی پردیس کشاورزی و منابع طبیعی دانشگاه تهران

4 دکتری رشتۀ مهندسی صنایع دانشگاه علم و صنعت ایران

چکیده

عملیات و فعالیت‏های پروژه‏های مکانیزاسیون کشاورزی می‌بایست در بازۀ زمانی کوتاه و مشخص و با ترتیب معین انجام گیرد؛ در غیر این صورت هزینه‏های به موقع انجام‌نشدن عملیات پیش می‌آید و به کاهش عملکرد محصول نیز می‌انجامد. برای جلوگیری از این هزینه‏ها در سامانه‏های کشاورزی در هر منطقه زمان‏بندی و برنامه‏ریزی مناسب وعلمی برای پروژه‏های مکانیزاسیون کشاورزی ضروری است تا فعالیت‏های موجود برای به‌ثمر‌رسیدن پروژه به‌ترتیبی صحیح و در زمان مناسبی انجام گیرند. ماهیت پروژه‏های کشاورزی ـ‌ازنظرانجام یک‌سری فعالیت‏های قطعی در زمان‌های احتمالی‌ـ در بین فنون شبکه‏ای به شبکه‏های پرت (PERT) نزدیک‏تر است. ازاین‌رو از شبکه‏های پرت برای برنامه‏ریزی و زمان‌بندی پروژۀ مکانیزاسیون تولید جو در استان البرز استفاده شد. به‌منظور تولید مکانیزۀ محصول جو اطلاعات و داده‏های لازم از طریق مشاهدۀ پژوهشگر از مزارع نمونه و تکمیل پرسش‌نامه‌ توسط کشاورزان منطقه جمع‌آوری شد. فعالیت‏های پروژه‏ تعیین گردید و نمودار ساختار شکست (WBS) آن نیز ترسیم شد. در‌پایان، شبکۀ پرت پروژه ترسیم و تجزیه و تحلیل شد. کوتاه‌ترین زمان ممکن برای تولید مکانیزه جو 20/228 روز است. با احتمال 99 درصد پروژۀ تولید مکانیزۀ جو در کمتر از 240 روز (دورۀ کشت جو) تمام می‌شود. با احتمال 95 درصد مدت پروژۀ تولید جو 45/231 روز است. نتایج نشان داد که مدل شبکۀ پرت، توانایی پاسخ‌گویی به هر نوع پرسش آماری در خصوص پروژه را دارد و هم‌چنین دید روشنی برای مدیر پروژه به‌منظور اتخاذ تصمیمات به موقع فراهم می‏آورد تا در مرحلۀ اجرا و عمل، طبق طرح‌ریزی و زمان‌بندی پروژه پیش رود و بتواند محصول را در زمان مطلوب به‌صورت مکانیزه و با بهره‏وری بالا تولید کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Planning and Scheduling Barley Production Mechanization Project Using the PERT Network: Case Study Alborz Province

نویسندگان [English]

  • Mohammad Sharifi 1
  • Asadollah Akram 2
  • Shahin Rafiee 3
  • Majid Sabzehparvar 4
1 University Of Tehran
2 Associate Professor in Department of Agricultural Machinery Engineering
3 Professor in Department of Agricultural Machinery Engineering
4 Ph.D. in the field of Industrial Engineering from Iran University of Science & Technology
چکیده [English]

Agricultural mechanization project must be identified in a short time frame to do a certain way; otherwise, cost is not the time to come and will also result in reduced yield. To avoid these costs in farming systems is necessary in any region that agricultural mechanization projects are and scheduling and planning as well as scientific until activities included in the project to fruition are done in the correct order and at the right time. Nature of agricultural projects - with its perform certain activities in a series of times - the closer PERT network is a network technology so PERT networks were used for planning and scheduling production mechanization barley at Alborz province. Barley for mechanized production data required by researchers from the fields of observation and questionnaire were collected by farmers. Project work break down structure diagram has been determined and it was drawn. PERT networks in the project were drawn and analyzed. The shortest time possible mechanized barley production is 228.20 days. likely to reach 99% of the product mechanized barley project completed in less than 240 days. with likely 95%, product barley project lasts 231.45 days.

کلیدواژه‌ها [English]

  • PERT network
  • Planning and scheduling
  • Agriculture mechanization
  • Alborz Province
Abdi, R. (2009). Agricultural Mechanization Project
Planning and Scheduling with Networks GERT.
Ph.D. Thesis. Department of Agricultural Machinery
Engineering, Faculty of Agricultural, University of
Tabriz (In Farsi).
Abdi, R., Ghasemzadeh, H.R., Abdollahpour, Sh. &
Dabbaghnasab, A. (2009). Modeling and Analysis
of Alfalfa Mechanization Project Process by GERT
Networks. Knowledge of Sustainable Agriculture,
1(19), 157-169.
Abdi, R., Ghassemzadeh, H.R., Abdollahpour, Sh.,
Sabzehparvar, M. & Dabbaghnasab, A. (2010).
Modeling and Analysis of Mechanization Projects of
Wheat Production by GERT Networks. Agricultural
Sciences in China, 9(7), 101-105
Afsari, M., Hejazi, S.R. & Haj shir mohammadi, A.
(2007).GERT Conversion Method for Fuzzy CPM
Project Schedule. Proceedings of the Fifth
International Conference on Industrial Engineering,
10-11 Jul.
Iran University of Science and Technology. Tehran,
Iran (In Farsi).
Ahcom, J. (2004). A model for benchmarking
contractors project management elements in Saudi
Arabia. Ph.D. Thesis, King Fahd University of
Petroleum and Minerals.
Ahmadi, A. & Hosseini baharanchi, R. (2004). Fuzzy
Management and Project Control. Jahan Jamejam
Press. Tehran, Iran (In Farsi).
Ajamipour, M. (2000). Planning and Project Control
with CPM & PERT. Institute IsiIran Press (In Farsi).
Aladpoush, H. (2007). General Knowledge of Project
Management Concepts (translation). Hami Press.
Tehran, Iran (In Farsi).
Anonymous, (2004). Irrigated wheat farm management
and technical guidelines. Ministry of Jihad-e
Agriculture of Iran (In Farsi).
Badiru, A.B. (1991). A simulation approach to PERT
network analysis. Simulation, 57, 245–255.
Basnet, C., Foulds, L. & Wilson, J. (2006). Scheduling
contractors’ farm-to-farm crop harvesting
operations. International Transaction in Operation
Research, 13, 1-15.
Clarke, L. (2000). Strategies for agricultural
mechanization development. FAO, Rome, Italy.
Davoodi, A. (1999). Usage PERT Technique in
Planning Research - Industrial Projects in
Engineering Research Center of Jihad. M.Sc.
Thesis. Faculty of Industrial Engineering, Iran
University of Science and Technology. Tehran, Iran
(In Farsi).
de Toro, A. & Hansson, P.A. (2004a). Analysis of field
machinery performance based on daily soil
workability status using discrete event simulation or
on average workday probability. Agricultural
Systems, 79, 109-129.
de Toro, A. & Hansson, P.A. (2004b). Machinery cooperatives:
A case study in Sweden. Biosystems
Engineering, 87(1), 13-25.
de Toro, A. (2004). Assessment of field machinery
performance in variable weather conditions using
discrete event simulation. Ph.D. thesis. Swedish
University of Agricultural Sciences. Uppsala.
de Toro, A. (2005). Influences on timeliness costs and
their variability on arable farms. Biosystems
Engineering, 92(1), 1-13.
Dimitri, G., Aharon, G. & Zohar, L. (2003). Resource
constrained scheduling simulation model for
alternative stochastic network projects. Mathematics
and Computers in Simulation, 63, 105-117.
Erik, L. (2002). Project scheduling (A Research
Handbook). Department of Applied economics.
Katholieke Universities, Leuven Belgium.
Foulds, L. & Wilson, J. (2005). Scheduling operations
for the harvesting of renewable resources. Journal of
Food Engineering, 70, 281-292.
Gauri, S. & Vandana, S. (2000). GERT analysis of a
two-unit cold standby system with repair.
Microelectronics and Reliability, 35, 837-840.
Gauri, S. (2003). GERT analysis of sampling plan for
system reliability. Microelectronics and Reliability,
28, 23-25.
Haj shir mohammadi, A. (2008). Management and
Project Control (Usage Methods CPM, PERT,
GERT, PN). 2 Edition. Isfahan Technology Center
of Jihad Publishing (In Farsi).
Karimi gavareshki, M.H. (2004). New fuzzy GERT
Method for Research Projects Scheduling. IEEE
Transactions, 2, 820-824.
Kenzo, K. & Nobuyuki, N. (2002). Efficient Monte
Carlo Simulation method of GERT-type network for
project management. Computer and Industrial
Engineering, 42, 521-531.
Manju, A. & Pooja, M. (2007). Reliability analysis of
consecutive-k, r-out-of-n: DFM system using
GERT. International Journal of Operations
Research, 4(2), 110-117.
Marrit, M. & Martin, K. (2007). The impact of
increasing farm size and mechanization on rural
income and rice production in Zhejiang province,
China. Agricultural Systems, 4, 123-129.
Matsumoto, T., Tokimatsu, K., Kosugi, T. & Yoshida,
H. (2003). Evaluation for development of
superconducting technologies in power sectors by
using GERT. In: Proceedings of the IASTED
International Conference on Power and Energy
Systems. California, USA. pp. 109-114.
McCahon, C.S. (1993). Using PERT as an
approximation of fuzzy project-network analysis.
Engineering Management. IEEE Transactions,
40,146-153
McKinion, J. M., Jenkins, J. N. & Akins, D. (2001).
Analysis of a precision agriculture approach to
cotton production. Computers and Electronics in
Agriculture, 32, 213-228.
Philip, Y. (1983). A Q-GERT Network simulation
model for a voice-data communication system.
Virginia Polytechnic Institute and State University,
USA.
Pritsker, A.A.B. (1966). GERT; Graphical Evaluation
and Review Technique. Part I. Fundamentals.
Journal of Industrial Engineering, 17, 267-274.
Reddy, J.P., Kumanan, S. and Chetty, O.V.K. (2001).
Application of PERT networks and a genetic
algorithm to multi-mode multi-resource constrained
project scheduling. International Journal of
Advanced Manufacturing Technology, 17, 305–314.
Run, Y. & Pingsun, L. (2006). Optimal partial
harvesting schedule for aquaculture operations.
Marine Resource Economics, 21, 301-315.
Sabzehparvar, M. (2009). Project Control. Termeh
Press. Tehran, Iran (In Farsi).
Sadri, M. & Sakkaki, S.H. (2004). Effective method in
network management and exploration projects.
Proceedings of Conference on Iranian Mining
Engineering, 1-3 Feb. University of Tarbiat
Modares. Tehran, Iran (In Farsi).
Sharifi, M., Akram, A., Rafiee, Sh., Sabzehparvar, M.
(2014). Prioritization of strategic agricultural crops
Alborz province using the Fuzzy Delphi method and
the Analytical Hierarchy Process (AHP). Journal of
Agricultural Machinery, 4(1), 116-124. (In Farsi).
Shih-Pin, C. (2007). Analysis of Critical Paths in a
Project Network with Fuzzy Activity Times.
European Journal of Operational Research, 183,
442-459.
Soo-Haeng, C. & Steven, D. (2005). A simulationbased
process model for managing complex design
projects. IEEE Transactions on Engineering
Management, 52(3), 316-328.
Takanobu, K., Ayami, H. & Tsuyoshi, M. (2004). Time
to realization: Evaluation of CO2 capture technology
R & D by GERT analyses. Energy, 29, 1297-1308.
Zhang, H., Li, H. and Tam, C.M. (2004). Fuzzy
discrete-event simulation for modeling uncertain
activity duration. Engineering Construction and
Architectural Management, 11(6), 426–437.
Zhang, H., Tam, C.M., Li, H. and Shi, J.J. (2006).
Particle swarm optimization-supported simulation
for construction operations. Journal of Construction
Engineering and Management, 132 (12), 1267-1274.
nd