مدل‌سازی تشخیص فراصوتی آلودگی پاکت‌های شیر UHT به باکتری Escherichia coli با شبکۀ عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، دانشکدۀ کشاورزی، دانشگاه شهرکرد

2 دانشیار، دانشکدۀ کشاورزی، دانشگاه شهرکرد

3 استادیار، دانشکدۀ کشاورزی، دانشگاه شهرکرد

4 استادیار، دانشکدۀ دامپزشکی، دانشگاه شهرکرد، شهرکرد

چکیده

تشخیص آلودگی میکروبی شیر، به‌عنوان مهم‏ترین شاخص کیفیت شیر در صنایع لبنی، به‌کمک‏ روش‏های نوین مهندسی اهمیت زیادی دارد. در تحقیق حاضر، آلودگی میکروبی پاکت‏های شیر UHT با استفاده از حسگرهای فراصوتی تشخیص داده شد. پاکت‏ها به‌صورت مصنوعی در چهار رقت متفاوت و با سه تکرار به باکتری E. coliآلوده شدند. فرکانس مرکزی سنسورهای پیزوالکتریک MHz 02/1 بود و با ولتاژ پیک V 5/18 استفاده شدند. برای پایش مشخصه‏های فراصوتی، فاکتورهای دامنۀ ولتاژ، و تأخیر زمانی اندازه‏گیری شدند. شبکۀ عصبی مصنوعی برای پیش‏بینی تعداد باکتری و pH پاکت‏های شیر براساس فاکتورهای فراصوتی طراحی شد. نتایج نشان داد که آلودگی پاکت‏های شیر در رقت اولیۀ CFU/ml 1000 پس از 5/7 ساعت تشخیص‌پذیر است به‌صورتی ‌که با کاهش رقت اولیۀ باکتری، مدت زمان تشخیص افزایش خواهد داشت. شبکۀ عصبی مصنوعی آموزش داده‌شده مقادیر تعداد باکتری و pH را نسبت به داده‏های تجربی با ضرایب تبیین 872/0 و 851/0 پیش‏بینی کرد. براساس پژوهش انجام‌شده، مشاهده می‌شود که آلودگی میکروبی شیر با استفاده از فراصوت امکان‏پذیر بوده و برای حصول دقت بالاتر، نیازمند تحقیقات بیشتری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Ultrasonic Detection Modeling of the Escherichia coli microbial contamination of UHT Milk packages using Artificial Neural Network

نویسندگان [English]

  • Vahid Mohammadi 1
  • Rahim Ebrahimi 2
  • Mahdi Ghasemi-Varnamkhasti 3
  • Maryam Abbasvali 4
1 Former Graduate Student, Faculty of Agriculture, Shahrekord University, Shahrekord , Iran
2 Associate Professor, Faculty of Agriculture, Shahrekord University, Shahrekord , Iran
3 Assistant Professor, Faculty of Agriculture, Shahrekord University, Shahrekord , Iran
4 Assistant Professor, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
چکیده [English]

Detecting microbial contamination of milk using novel engineering techniques is very worthy. In current study, microbial contamination of UHT milk packages was detected using ultrasonic sensors. Milk packages artificially were inoculated to E. coli in four dilutions and three replications. Monitoring of ultrasonic properties was performed by measuring amplitude and time delay factors. Artificial neural network designed for predicting total count and pH of milk packages based on ultrasonic properties. Results showed that contamination of milk packages for initial dilution 1000 CFU/ml after 7.5 h is capable to detect, and detection period would be increased in conjunction with initial bacterial dilution decreasing. Trained neural network predicted total count and pH values with the coefficient of determination 0.979 and 0.795 against the experimental values. According to the current project, is resulted that microbial contamination is detectable using ultrasonic technique, and to achieve high accuracies, more researches are needed.

کلیدواژه‌ها [English]

  • Ultrasound
  • Microbial contamination
  • milk
  • detection
  • ANN
Awad, T.S., Moharram, H. E., Shaltout, O. E., Asker D. & Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International, 48(2), 410-427.
Bylund, G. (1995). Dairy processing handbook. Sweden: Tetra Pak Processing Systems AB.
Carneiro, L. A. M., Lins, M. C., Garcia, F. R. A., Silva, A. P. S., Mauller, P. M., Alves, G. B., Rosa, A. C. P., Andrade, J. R. C., Freitas-Almeida, A. C., Queiroz, M. L. P. (2006). Phenotypic and genotypic characterisation of Escherichia coli strains serogrouped as enteropathogenic E. coli (EPEC) isolated from pasteurised milk. International Journal of Food Microbiology, 108 (2), 15–21.
Chen, T. R., Wei, Q. K., & Chen, Y. J. (2011). Pseudomonas spp. And Hafnia alvei growth in UHT milk at cold storage. Food Control, 22 (12), 697-701.
Cheroutre-Vialette, M. & Lebert, A. (2002). Application of recurrent neural network to predict bacterial growth in dynamic conditions. International Journal of Food Microbiology, 73(2), 107-118.
Elvira, L., Durán, C. M., Urréjola, J., & Montero de Espinosa, F. R. (2014). Detection of microbial contamination in fruit juices using noninvasive ultrasound. Food Control, 40: 145-150.
Elvira, L., Sampedro, L., Matesanz, J., Gómez-Ullate, Y., Resa, P., Iglesias, J. R., Echevarría, F. J. & Montero de Espinosa, F. (2005). Non-invasive and non-destructive ultrasonic technique for the detection of microbial contamination in packed UHT milk. Food Research International, 38(6), 631-638.
Elvira, L., Sampedro, L., Montero de Espinosa, F., Matesanz, J., Gómez-Ullate, Y., Resa, P.,  Echevarría, F. J. & Iglesias, J. R. (2006). Eight-channel ultrasonic device for non-invasive quality evaluation in packed milk. Ultrasonics, 45(1), 92-99.
Elvira, L., Sierra, C., Galán, B. & Resa, P. (2010). Ultrasonic non invasive techniques for microbiological instrumentation. Physics Procedia, 3(1), 789-794.
Fievez, V., Colman, E., Castro-Montoya, J. M., Stefanov, I., &Vlaeminck, B. (2012). Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update. Animal Feed Science and Technology, 172(1-2) 51–65.
Garcı´a-Gimeno, R M., Hervás-Martínez, C., & de Silóniz, M. I. (2002).Improving artificial neural networks with a pruning methodology and genetic algorithms for their application in microbial growth prediction in food. International Journal of Food Microbiology, 72(1-2) 19–30.
Geeraerd Herremans, A. H., Herremans, C. H., Cenens, C., & Van Impe, J. F. (1998). Application of artificial neural networks as a non-linear modular modeling technique to describe bacterial growth in chilled food products. International Journal of Food Microbiology, 44(1-2) 49–68.
Ghasemi-Varnamkhasti, M., Mohtasebi, S. S. & Siadat, M. (2010). Biomimetic-based odor and taste sensing systems to food quality and safety characterization: An overview on basic principles and recent achievements. Journal of Food Engineering, 100(3), 377-387.
Hajmeer, M. & Basheer, I. (2002). A probabilistic neural network approach for modeling and classification of bacterial growth/no-growth data. Journal of Microbiological Methods, 51(2), 217-226.
Jeyamkondan, S., Jayas, D. S. & Holley, R. A. (2001). Microbial growth modelling with artificial neural networks. International Journal of Food Microbiology, 64(3), 343-354.
Jia, J., Liang, C., Cao, J. & Li, Z. (2013). Application of Probabilistic Neural Network in Bacterial Identification by Biochemical Profiles. Journal of Microbiological Methods, 94(2), 86-87.
Jimenez-Marquez, S. A., Thibault, J. & Lacroix, C. (2005). Prediction of moisture in cheese of commercial production using neural networks. International dairy journal, 15(11), 1156-1174.
Kou, W., Chen, L., Sun, F. & Yang, L. (2011). Application of bacterial colony chemotaxis optimization algorithm and RBF neural network in thermal NDT/E for the identification of defect parameters. Applied Mathematical Modelling, 35(3), 1483-1491.
Mohammadi, V. (2013). Detection of microbial contamination in UHT milk packages using ultrasonic sensors. M. Sc. thesis. Shahrekord University. Iran. In Farsi.
Mohammadi, V., Ghasemi-Varnamkhasti, M., Ebrahimi, R., Abbasvali, M. (2014). Ultrasonic techniques for the milk production industry. Measurement, 58: 93-102.
Montero de Espinosa, F., Elvira, L., Gomex-Ullate, L., Resa, P., Matesanz, J., Ron, A., Iglesias J. & Echevarria, F. J. (2003). Industrial system to perform the microbiological control of UHT milk in carton-like packages by ultrasound, Ultrasonics, 2, 1360-1363.
Muñoz-Berbel, X., Vigués, N., Mas, J., Del Valle, M., Muñoz, F. J. & Cortina-Puig, M. (2008). Resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy and artificial neural networks. Biosensors and Bioelectronics, 24(4), 958-962.
Nguyen, T. M. P., Lee, Y. K. & Zhou, W. (2009). Stimulating fermentative activities of bifidobacteria in milk by highintensity ultrasound. International dairy journal, 19(6), 410-416.
Pallav, P., Hutchins, D. A. & Gan, T. A. (2009). Air-coupled ultrasonic evaluation of food materials. Ultrasonics, 49(2), 244-253.
Park, Y. W. (2007). Rheological characteristics of goat and sheep milk. Small Ruminant Research, 68(1), 73-87.
Quigley, L., O'Sullivan, O., Beresford, T. P., Ross, R. P., Fitzgerald, G. F., Cotter, P. D. (2011). Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese. International Journal of Food Microbiology, 150(3), 81–94. 
Resa, P., Bolumar, T., Elvira, L., Pérez, G., & Montero de Espinosa, F. (2007). Monitoring of lactic acid fermentation in culture broth using ultrasonic velocity. Journal of Food Engineering, 78(3) 1083–1091.
Resa, P., Elvira, L., Sierra, C., & Montero de Espinosa, F. R. (2009). Ultrasonic velocity assay of extracellular invertase in living yeasts. Analytical Biochemistry, 384(1) 68–73.
Ruas-Madiedo, P., Alonso, L., Delgado, T., Bada-Gancedo, J. C. & de los Reyes-Gavilán, C. G. (2002a). Manufacture of Spanish hard cheeses from CO2 treated milk. Food Research International, 35(7), 681-690.
Ruas-Madiedo, P., Alting, A. C., & Zoon, P. (2005). Effect of exopolysaccharides and proteolytic activity of Lactococcus lactis subsp cremoris strains on the viscosity and structure of fermented milks. International dairy journal, 15(2), 155-164.
Ruas-Madiedo, P., Tuinier, R., Kanning, M. & Zoon, M. (2002b). Role of exopolysaccharides produced bysubsp cremoris on the viscosity of fermented milks. International dairy journal, 12(8), 689-695.
Sofu, A., & Ekinci, F. Y. (2007). Estimation of storage time of yogurt with artificial neural network modeling. Journal of Dairy Science, 90:3118–3125.
Tiwari, B. K., Mason, T. J., Cullen, P., Brijesh, K. & Valdramidis, V.  (2012). Ultrasound processing of fluid foods. Elsevier: Novel Thermal and Non-Thermal Technologies for Fluid Foods, 135-165.