جداسازی باکتری‌های تولیدکنندۀ آنزیم لیپاز از زیتون و بررسی اثر پارامترهای گوناگون بر تولید آنزیم در تخمیر حالت جامد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکدۀ مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 استاد گروه علوم و صنایع غذایی، دانشکدۀ مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

3 استادیار گروه بیوتکنولوژی، دانشکدۀ مهندسی شیمی، دانشگاه تربیت مدرس

چکیده

باکتری باسیلوس هوازی، مزوفیل، و لیپولیتیک (فعالیت آنزیمی U/ml40) از نمونۀ عصارۀ زیتون جداسازی شد. سویۀ جداسازی‌شده براساس مشخصات مورفولوژیکی و شیمیایی و ازطریق روش ملکولی توالی‌یابی ژن 16 S rRNA شناسایی شد. تأثیر سوبسترای جامد )هستۀ انار آسیاب‌شده، هستۀ انگور آسیاب‌شده، و دانۀ گشنیز آسیاب‌شده به‌عنوان سوبسترای جامد استفاده شدند)، اندازۀ ذرات سوبسترا، محتوای رطوبت، و سرعت چرخش به‌عنوان فاکتورهای تأثیرگذار بر تخمیر حالت جامد بررسی شد. فعالیت آنزیمی بهینۀ U/ml120 از محیط کشتی حاوی(w/w)  3درصد عصارۀ دانۀ گشنیز آسیاب‌شده، g/l10 عصارۀ مخمر،g/l  25 روغن زیتون، محتوی رطوبت 70درصد، و سرعت چرخش rpm 170 بعد از 24 ساعت گرمخانه‌گذاری به‌دست آمد که فعالیت آنزیمی در مقایسه با حالت قبل از بهینه‌سازی 07/3 برابر افزایش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Isolation of Lipase producing bacteria from olive and the various parameter effect on enzyme production in solid state fermentation

نویسندگان [English]

  • Samira Moradi 1
  • Seyed Hadi Razavi 2
  • Seyyed Mohammad Mousavi 3
1 Farmer Garduate student, University College of Agriculture and Naturd Resaurces, University of Tehran
2 Professor, University College of Agriculture and Naturd Resaurces, University of Tehran
3 Assistant Professor, Faculty of Chenical Enginring University of Tarbiat Modarres
چکیده [English]

An aerobic, meophilic and lipolitic Bacillus.sp bacterium (lipase activity 40 U/ml) was isolated from the olive extract. This isolate was identified based on morphological and biochemical characterization and 16S rRNA gene sequence. Effect of the solid substrate (pomegranate seed ground, grape seed ground and coriander seed ground as a solid substrate), the substrate particle size, moisture content and rotation speed as factors affecting the solid state fermentation was studied.The optimum lipase activity (120 U/ml) was achieved at optimum levels of factors of coriander seed extract (3.0w/w), olive oil concentration (25 g/L), yeast extract (10 g/l), moisture content (70.0%), and agitation rate (170.0rpm) that lipase activity increased to 3.07-fold.

کلیدواژه‌ها [English]

  • Lipase enzyme
  • Bacillus sp
  • 16S rRNA
  • Solid state fermentation

 Abbasi, H., K. Rezaei, and L. Rashidi. (2008). Extraction of essential oils from the seeds of pomegranate using organic solvents and supercritical CO2. Journal of the American Oil Chemists' Society. 85(1): p. 83-89.

Alegria, A., Alvarez-Martin, P., Sacristan, N., Fernandez, E., Delgado, S., & Mayo, B. (2009). Diversity anevolution of the microbial populations during manufacture and ripening of Casín, a traditional Spanish, starter-free cheese made from cow’s milk. International Journal of Food Microbiology, 136:44–51.
Alonso, F. O. M., E. B. L. Oliveira, G. M. D. Ortiz, F. V. P. and Meirelles. (2005). Improvement of lipase production at different stirring speeds and oxygen levels. Brazilian J. Chem. Eng, 22(01): 9–18.
Bose, A. and H. Keharia. (2013). Production, characterization and applications of organic solvent tolerant lipase by Pseudomonas aeruginosaAAU2. Biocatalysis and Agricultural Biotechnology, 2(3): 255-266.
Collins, M. D., Rodrigues, U., Ash, C., Aguirre, M., Farrow, J. A. E., Martinez-Murcia, A., & Phillips, A. (1991). Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as detero mined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiology Letter, 77:5-12.
Contesini, F. J., V. C. F. da Silva, R. F. Maciel, R. J. de Lima, F. F. C. Barros and P. de Oliveira Carvalho . (2009). Response surface analysis for the production of an enantioselective lipase from Aspergillus niger by solid-state fermentation. The Journal of Microbiology, 47(5): 563-571.
Elibol,  M., and D. Ozer . (2000). Lipase production by immobilized Rhizopus arrhizus. Process Biochemistry, 36: 219-223.
Ertugrul, S., G. Donmez and S. Takaç (2007). Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity. Journal of Hazardous Materials, 149(3): 720-724.
Esposito, S., M. Semeriva and P. Desnuelle (1973). Effect of surface pressure on the hydrolysis of ester monolayers by pancreatic lipase. Biochimica et Biophysica Acta (BBA)-Enzymology, 302(2): 293-304.
Chander, H., B. Ranganathan and J. Singh (1979). Purification and some properties of lipase from Streptococcus faecalis. Journal of Food Science, 44(6): 1747-1751.
Chen, S. -J., C. -Y. Cheng and T. -L. Chen (1998). Production of an alkaline lipase by Acinetobacter radioresistens. Journal of fermentation and bioengineering, 86(3): 308-312.
Maia, M., A. Heasley, M. Camargo de Morais, E. Melo, M. Morais Jr, W. Ledingham and J. Lima Filho (2001). Effect of culture conditions on lipase production by Fusarium solani in batch fermentation. Bioresource Technology, 76(1): 23-27.
Mironova, A., Filippova, G., Fedina, N., Volkova, Z., Kozlova, V., Alymova, T., Gorshkova, E. and Bykova, S. (1990). Chemical and biological properties of coriander fatty oil. Voprosy pitaniia, 59-62.
D’Annibale, A., G. G. Sermanni, F. Federici and M. Petruccioli (2006). Olive-mill wastewaters: a promising substrate for microbial lipase production. Bioresource technology, 97(15): 1828-1833.
Dheeman, D. S., G. Henehan and J. M. Frías (2011). Purification and properties of Amycolatopsis mediterranei DSM 43304 lipase and its potential in flavour ester synthesis. Bioresource technology, 102(3): 3373-3379.
De urraza, P. J., A. Gomez-Zavaglia, M. E. Lozano, V. Romanowsky and G. L. De antony (2000). DNA fingerprinting of thermophilic lactic acid bacteria using repetitive sequence-based polymerase chain reaction. Journal of dairy research, 67(03): 381-392.
De Almeida, A. F., S. M. Taulk-Tornisielo, and E. C. Carmona (2013). Influence of carbon and nitrogen sources on lipase production by a newly isolated Candida viswanathii strain. Annals of Microbiology, 63(4): p. 1225-1234.
Gharibzahedi, S. M. T., S. M. Mousavi, M. Hamedi and F. Khodaiyan (2013). Application of response surface modeling to optimize critical structural components of walnut–beverage emulsion with respect to analysis of the physicochemical aspects. Food and Bioprocess Technology, 6(2): 456-469.
Gupta, R., N. Gupta and P. Rathi (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64(6): 763-781.
Joseph, B., N. Shrivastava and P. W. Ramteke (2012). Extracellular cold-active lipase of Microbacterium luteolum isolated from Gangotri glacier, western Himalaya: Isolation, partial purification and characterization. Journal of Genetic Engineering and Biotechnology, 10(1): 137-144.
Kempka, A. P., N. L. Lipke, T. d. L. F. Pinheiro, S. Menoncin, H. Treichel, D. M. Freire, M. Di Luccio and D. de Oliveira (2008). Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess and Biosystems Engineering, 31(2): 119-125.
Hasan, F., A. A. Shah and A. Hameed (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39(2): 235-251.
Hou, C. and T. Johnston (1992). Screening of lipase activities with cultures from the agricultural research service culture collection. Journal of the American Oil Chemists’ Society, 69(11): 1088-1097.
Haba, E., O. Bresco, C. Ferrer, A. Marques, M. Busquets and A. Manresa (2000). Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate. Enzyme and microbial technology, 26(1): 40-44.
Kok, R. G., J. J. Thor, I. M. Nugteren‐Roodzant, M. B. Brouwer, M. R. Egmond, C. B. Nudel, B. Vosman and K. J. Hellingwerf (1995). Characterization of the extracellular lipase, LipA, of Acinetobacter calcoaceticus BD413 and sequence analysis of the cloned structural gene. Molecular microbiology, 15(5): 803-818.
Krishnaveni, M. (2013). Characterization of lipase producing Staphylococcus aureus MTCC 10787 from soil sample at Salem, Tamil Nadu, India. Journal of Pharmacy Research, 6(2): 304-308.
Lineweaver, H. and D. Burk (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56(3): 658-666.
Liu, C. H., Chen, C. Y., Wang, Y. W., Chang, J. S.(2011). Fermentation strategies for the production of lipase by an indigenous isolate Burkholderia sp. C20. Biochem. Eng,  J; 58-59, 96-102.
Mateos Diaz, J., J. Rodríguez, S. Roussos, J. Cordova, A. Abousalham, F. Carriere and J. Baratti (2006). Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme and Microbial Technology, 39(5): 1042-1050.
Mahanta, N., Gupta, A., Khare, S. K., 2008. Production of protease and lipase by solvent tolerant Pseudomonas aeruginosaPseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresour. Technol. 99, 1729-1735.
Mahadik, N. D., U. S. Puntambekar, K. B. Bastawde, J. M. Khire and D.V. Gokhale. (2002). Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochemistry, 38(5): 715-721.
Maia, M., A. Heasley, M. Camargo de Morais, E. Melo, M. Morais Jr, W. Ledingham and J. Lima Filho (2001). Effect of culture conditions on lipase production by Fusarium solani in batch fermentation. Bioresource Technology, 76(1): 23-27.
Pandey, A., S. Benjamin, C. R. Soccol, P. Nigam, N. Krieger and V. T. Soccol.  (1999). The realm of microbial lipases in biotechnology. Biotechnology and applied biochemistry, 29(2): 119-131.
Pencreac’h, G. and J.C. Baratti. (2001). Comparison of hydrolytic activity in water and heptane for thirty-two         commercial lipase preparations. Enzyme and microbial technology, 28(4): p. 473-479.
Pimentel, M., N. Krieger, L. Coelho, J. Fontana, E. Melo, W. Ledingham and J. Lima Filho. (1994). Lipase from a Brazilian strain of Penicillium citrinum. Applied biochemistry and biotechnology, 49(1): 59-74.
Pokorny, D., J. Friedrich and A. Cimerman. (1994). Effect of nutritional factors on lipase biosynthesis by Aspergillus niger. Biotechnology letters, 16(4): 363-366.
Rivera-Munoz, G., J. Tinoco-Valencia, S. Sanchez and A. Farres (1991). Production of microbial lipases in a solid state fermentation system. Biotechnology letters, 13(4): 277-280.
Rabak, F., (1921). Grape-Seed Oil. Industrial & Engineering Chemistry. 13(10): p. 919-921.
Sharma, R., Y. Chisti and U. C. Banerjee (2001). Production, purification, characterization, and applications of lipases. Biotechnology advances, 19(8): 627-662.
Veerabhadrappa, M. B., Shivakumar, S. B., Devappa, S. (2014). Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98. J. Biosci. Bioeng, 117, 208-214.
Winkler, U. K. and M. Stuckmann (1979). Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology, 138(3): 663-670.
Yadav, R. P., R. K. Saxena, R. Gupta and W. Davidson (1998). Purification and characterization of a regiospecific lipase from Aspergillus terreus. Biotechnology and applied biochemistry, 28(3): 243-249.