اثر نانوذرات رس بر خواص ساختاری و حرارتی فیلم‌های نانوبیوپلیمری بر پایه کفیران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 هیات علمی دانشگاه تهران

2 دانشجو کارشناسی ارشد

3 دانشجوی کارشناسی ارشد

چکیده

کفیران یک اگزوپلی­ساکارید تولید شده توسط میکروارگانیسم­های دانک کفیر بوده که دارای خواص سلامت بخشی مختلفی است. در این پژوهش، خصوصیات فیزیکومکانیکی و حرارتی فیلم­های نانوکامپوزیتی تولید شده از کفیران- مونت موریلونیت (.0 1، 3 و 5 درصد وزنی/وزنی مونت موریلونیت) مورد مطالعه قرار گرفت. نتایج نشان داد افزایش نانورس سبب افزایش ضخامت و مقاومت کششی فیلم­ها می­شود اما تاثیر آن بر کشش در نقطه شکست، دمای انتقال شیشه­ای و دمای ذوب در غلظت­های مختلف متفاوت است به طوری که تا غلظت 3 درصد سبب افزایش فاکتور­های مذکور و در غلظت­های بالاتر (5درصد) کاهش آنها را به دنبال دارد. تجزیه و تحلیل الگوی پراش اشعه ایکس نشان داد که یک ساختار متورق در اثر اضافه کردن مونت موریلونیت به ماتریکس کفیران ایجاد می­شود. تصاویر میکروسکوپ الکترونی و نتایج توپوگرافی سطحی به ترتیب نشان دهنده توزیع مناسب نانوذرات مونت­موریلونیت در ساختار فیلم­های بیو‌نانوکامپوزیتی و افزایش قابل توجه پارامترهای زبری در اثر افزودن نانورس به ماتریکس کفیران می­باشند. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of clay nanoparticle on structural and thermal properties of nano-biopolymer films based on kefiran

نویسندگان [English]

  • Faramarz Khodaiyan 1
  • Sohyla Esmi 2
  • Syed Saeid Hosseini 3
چکیده [English]

Kefiran is an exopolysaccharide produced by microorganisms present in the kefir grains that has several health promoting properties. In this research, physico-mechanical and thermal characteristics of nanocomposite film composed of kefiran-montmorillonite (MMT; 1, 3 and 5% w/w) were studied. Results showed that the thickness and the tensile strength of the films increased by increasing the nanoclay content but its effect on the elongation at break, glass transition temperature and melting temperature in various concentrations is different, so that these factors increase until concentration of 3% of the nanoclay and decrease in higher concentrations(5%). X-ray diffraction analysis showed that formation of an exfoliated structure with the addition of small amounts of MMT to the kefiran matrix. Scanning electron microscopy and the surface topography results showed ideal dispersion for MMT nanoparticles into the structure of the bio-nanocomposite films and a considerable increase in roughness parameters by incorporating the nanoparticles in kefiran matrix,respectively.

کلیدواژه‌ها [English]

  • Nanocomposite film
  • Kefiran
  • X-ray diffraction
  • Surface topography
ASTM (2001). Standard test method for tensile properties of thin plastic sheeting. Standard D882. In Annual book of ASTM: Philadelphia. PA: American Society for Testing and Materials.

Almasi, H., Ghanbarzadeh, B. & Entezami, A. A. (2010). Physicochemical properties of starch-CMC- nanoclay biodegradable films. International Journal of Biological Macromolecules, 46(1), 1–5.

Bae, H. J., Park, H. J., Hong, S. I., Byun, Y. J., Darby, D. O., Kimmel, R. M. & Whiteside, W. S. (2009). Effect of clay content, homogenization RPM, pH, and ultrasonication on mechanical and barrier properties of fish gelatin/montmorillonite nanocomposite films. LWT-Food Science and Technology, 42(6), 1179–1186.

Casariego, A., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., Cruz, L., Diaz, R. & Vicente, A. A. (2009). Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles' concentrations. Food Hydrocolloids, 23(7), 1895–1902.

Chen, H. (1995). Functional properties and applications of edible films made of milk proteins. Journal of Dairy Science, 78(11), 2563–2583.

Cheng, L. H., Karim, A. A. & Seow, C. C. (2006). Effects of Water‐Glycerol and Water‐Sorbitol Interactions on the Physical Properties of Konjac Glucomannan Films. Journal of Food Science, 71(2), E62–E67.

Cyras, V. P., Manfredi, L. B., Ton-That, M. T. & Vazquez, A. (2008). Physical and mechanical properties of thermoplastic starch/ montmorillonite nanocomposite films. Carbohydrate Polymers, 73(1), 55–63.

Debeaufort, F., Quezada-Gallo, J. A. & Voilley, A. (1998). Edible films and coatings: tomorrow’s packagings: a review. Critical Reviews in Food Science, 38(4), 299–313.

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, Pa. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

Fabra, M. J., Talens, P. & Chiralt, A. (2008). Tensile properties and water vapor permeability of sodium caseinate films containing oleic acid–beeswax mixtures. Journal of Food Engineering, 85(3), 393–400.

Fabra, M. J., Talens, P. & Chiralt, A. (2009). Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures. Food Hydrocolloids, 23(3), 676–683.

Ghasemlou, M., Khodaiyan, F., Oromiehie, A. & Yarmand, M. S. (2011). Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chemistry, 127(4), 1496–1502.

Gontard, N., Guilbert, S. & Cuq, J. (1993). Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. Journal of Food Science, 58(1), 206–211.

Khanzadi, M., Jafari, S. M., Mirzaei, H., Chegini, F. K., Maghsoudlou, Y. & Dehnad, D. (2015). Physical and mechanical properties in biodegradable films of whey protein concentrate–pullulan by application of beeswax. Carbohydrate Polymers, 118, 24–29.

Kokoszka, S., Debeaufort, F., Hambleton, A., Lenart, A. & Voilley, A. (2010). Protein and glycerol contents affect physico-chemical properties of soy protein isolate-based edible films. Innovative Food Science & Emerging Technologies, 11(3), 503–510.

Kokoszka, S., Debeaufort, F., Lenart, A. & Voilley, A. (2010). Water vapour permeability, thermal and wetting properties of whey protein isolate based edible films. International Dairy Journal, 20(1), 53–60.

Kooiman, P. (1968). The chemical structure of kefiran, the water-soluble polysaccharide of the kefir grain. Carbohydrate Research, 7(2), 200–211.

Kubies, D., Scudla, J., Puffr, R., Sikora, A., Baldrian, J., Kovarova, J. & Rypacek, F. (2006). Structure and mechanical properties of poly (L-lactide)/layered silicate nanocomposites. European Polymer Journal, 42(4), 888–899.

Maeda, H., Zhu, X., Omura, K., Suzuki, S. & Kitamura, S. (2004). Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofactors. Biofactors, 22(1), 197–200.

Micheli, L., Uccelletti, D., Palleschi, C. & Crescenzi, V. (1999). Isolation and characterisation of a ropy Lactobacillus strain producing the exopolysaccharide kefiran. Applied Microbiology and Biotechnology, 53(1), 69–74.

Mook Choi, W., Wan Kim, T., Ok Park, O., Keun Chang, Y. & Woo Lee, J. (2003). Preparation and characterization of poly (hydroxybutyrate‐co‐hydroxyvalerate)–organoclay nanocomposites. Journal of Applied Polymer Science, 90(2), 525–529.

Petersson, L. & Oksman, K. (2006). Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Composites Science and Technology, 66(13), 2187–2196.

Piermaria, J. A., Pinotti, A., Garcia, M. A. & Abraham, A. G. (2009). Films based on kefiran, an exopolysaccharide obtained from kefir grain: Development and characterization. Food Hydrocolloids, 23(3), 684–690.

Rhim, J. W., Hong, S. I., Park, H. M. & Ng, P. K. W. (2006). Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of Agricultural and Food Chemistry, 54(16), 5814–5822.

Rhim, J. W., Lee, J. H. & Kwak, H. S. (2005). Mechanical and water barrier properties of soy protein and clay mineral composite films. Food Science and Biotechnology, 14(1), 112-116.

Rimada, P. S. & Abraham, A. G. (2001). Polysaccharide production by kefir grains during whey fermentation. Journal of Dairy Research, 68(04), 653–661.

Rimdusit, S., Jingjid, S., Damrongsakkul, S., Tiptipakorn, S. & Takeichi, T. (2008). Biodegradability and property characterizations of methyl cellulose: effect of nanocompositing and chemical crosslinking. Carbohydrate Polymers, 72(3), 444–455.

Sothornvit, R., Rhim, J. W. & Hong, S. I. (2009). Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. Journal of Food Engineering, 91(3), 468–473.

Tang, S., Zou, P., Xiong, H. & Tang, H. (2008). Effect of nano-SiO 2 on the performance of starch/polyvinyl alcohol blend films. Carbohydrate Polymers, 72(3), 521–526.

Wakai, M. & Almenar, E. (2015). Effect of the presence of montmorillonite on the solubility of whey protein isolate films in food model systems with different compositions and pH. Food Hydrocolloids, 43, 612–621.

Xu, Y., Ren, X. & Hanna, M. A. (2006). Chitosan/clay nanocomposite film preparation and characterization. Journal of Applied Polymer Science, 99(4), 1684–1691.

Zheng, J. P., Li, P., Ma, Y. L. & Yao, K. De. (2002). Gelatin/montmorillonite hybrid nanocomposite. I. Preparation and properties. Journal of Applied Polymer Science, 86(5), 1189–1194.

Zolfi, M., Khodaiyan, F., Mousavi, M. & Hashemi, M. (2014a). Development and characterization of the kefiran-whey protein isolate-TiO2 nanocomposite films. International Journal of Biological Macromolecules, 65, 340–345.

Zolfi, M., Khodaiyan, F., Mousavi, M. & Hashemi, M. (2014b). The improvement of characteristics of biodegradable films made from kefiran-whey protein by nanoparticle incorporation. Carbohydrate Polymers, 109, 118–125.

Zolfi, M., Khodaiyan, F., Mousavi, M. & Hashemi, M. (2014c). Characterization of the new biodegradable WPI/clay nanocomposite films based on kefiran exopolysaccharide. Journal of Food Science and Technology, 52(6), 3485–3493.