تأثیر زمان تیمار آنزیمی‌ترانس‌گلوتامیناز میکروبی بر خصوصیات فیلم خوراکی بر پایه ایزوله پروتئین آب‌پنیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه صنایع غذایی، دانشکده علوم دامی و صنایع غذایی، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

2 عضو هیات علمی گروه علوم و صنایع غذایی، دانشکده علوم دامی و صنایع غذایی، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

چکیده

در این مطالعه، تأثیر زمان تیمار آنزیمی ترانس­گلوتامیناز میکروبی (MTGase) بر خصوصیات فیلم خوراکی بر پایه ایزوله پروتئین آب­پنیر بررسی شد. نتایج نشان داد که خصوصیات فیلم تیمارشده با آنزیم، متأثر از زمان تیمار آنزیمی محلول تشکیل­دهنده فیلم است. تیمار با زمان کم (1 ساعت) به طور معنی­داری باعث افزایش مقاومت به کشش (TS) و کاهش درصد افزایش طول تا نقطه شکست (EB) در فیلم در مقایسه با نمونه شاهد شد. در فیلم­های تیمارشده، میزان  TS بتدریج با افزایش زمان از 1 به 3 ساعت، کاهش و میزان EB بتدریج افزایش یافت. نفوذپذیری به بخار آب فیلم شاهد در مقایسه با فیلم تیمار شده با آنزیم به مدت 1 ساعت از gm-1s-1pa-110-10×6/3 به gm-1s-1pa-110-10×31/2 و حلالیت در آب آن از 07/37 به 97/19 درصد کاهش یافت؛ اما همزمان با افزایش زمان، حلالیت در آب و نفوذپذیری به بخار آب افزایش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The influence of enzymatic treatment time of microbial transglutaminase on the properties of edible film based on whey protein isolate

نویسندگان [English]

  • Farzaneh Kooravand 1
  • Hosein Jooiandeh 2
  • Hasan Barzgar 2
  • Mohammad Hojjati 2
1
2
چکیده [English]

The effect of enzymatic treatment time of microbial transglutaminase (MTGase) on the characteristics of whey protein isolate (WPI) films was investigated. Results shown that the properties of MTGase-treated films were affected by increasing the enzymatic treatment time. Enzymatic treatment at lower incubation time, i.e. for 1 h, significantly resulted in higher values of tensile strength (TS) and lower values of elongation at break (EB) as compared to control film. In the MTGase-treated films, the TS values decreased gradually and EB values increased progressively with increasing incubation time from 1 to 3 h. Water vapor permeability (WVP)and total soluble matter(TSM) of control film in comparison with MTGase-treated films decreased from3.6 ×10 10 to 2.31 ×10 10 g m-1 s-1 pa-1 and from 37.07 to 19.97 percent, respectively. However, as the time of enzymatic treatment was increased the TSM and WVP were gradually increased.

کلیدواژه‌ها [English]

  • Edible film
  • Mechanical properties
  • Microbial transglutaminase
  • Whey protein isolate
ASTM (2000). Standard test method for tensile properties of thin plastic sheeting. Designation: D882-00. In: Annual book of ASTM standards (pp. 160–168). Philadelphia, PA: ASTM.
Atarés, L., Bonilla, J., &Chiralt, A. (2010). Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 100(4), 678-687.
Bae, H. J., Darby, D. O., Kimmel, R. M., Park, H. J., & Whiteside, W. S. (2009). Effects of transglutaminase-induced cross-linking on properties of fish gelatin–nanoclay composite film. Food chemistry, 114(1), 180-189.
Carvalho, de R. A., & Grosso, C. R. F. (2004). Characterization of gelatin based films modified with trans­glutaminase, glyoxal and formaldehyde. Food hydrocolloids, 18(5), 717-726.
Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011). Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. International Journal of Biological Macromolecules, 49(3), 378-384.
Jiang, Y., Tang, C. H., Wen, Q. B., Li, L., & Yang, X. Q. (2007). Effect of processing parameters on the properties of transglutaminase-treated soy protein isolate films. Innovative Food Science & Emerging Technologies, 8(2), 218-225.
Jooyandeh, H. (2011). Whey protein films and coatings: A review. Pakistan Journal of Nutrition, 10 (3), 296-301.
Jooyandeh, H., Mortazavi, A., Farhang, P., and Samavati, V. (2015). Physicochemical properties of set-Style yoghurt as effected by microbial transglutaminase and milk solids contents. Journal of Applied Environmental and Biological Sciences, 4(11S), 59-67
Khanzadi, M., Jafari, S. M., Mirzaei, H., Chegini, F. K., Maghsoudlou, Y., & Dehnad, D. (2015). Physical and mechanical properties in biodegradable films of whey protein concentrate–pullulan by application of beeswax. Carbohydrate polymers, 118, 24-29.
Kuraishi, C., Yamazaki, K., & Susa, Y. (2001). Transglutaminase: its utilization in the food industry. Food Reviews International, 17(2), 221-246.
Micard, V., Belamri, R., Morel, M. H., & Guilbert, S. (2000). Properties of chemically and physically treated wheat gluten films. Journal of Agricultural and Food Chemistry, 48(7), 2948-2953.
Miller, K. S., & Krochta, J. M. (1997). Oxygen and aroma barrier properties of edible films: A review. Trends in Food Science & Technology, 8(7), 228-237.
Pérez, L. M., Balagué, C. E., Rubiolo, A. C., & Verdini, R. A. (2011). Evaluation of the biocide properties of whey-protein edible films with potassium sorbate to control non-O157 shiga toxin producing Escherichia coli. Procedia Food Science, 1, 203-209.
Perez‐gago, M. B., & Krochta, J. M. (2001). Denaturation time and temperature effects on solubility, tensile properties, and oxygen permeability of whey protein edible films. Journal of Food Science, 66(5), 705-710.
Ramos, Ó. L., Pereira, J. O., Silva, S. I., Fernandes, J. C., Franco, M. I., Lopes-da-Silva, J. A & Malcata, F. X. (2012). Evaluation of antimicrobial edible coatings from a whey protein isolate base to improve the shelf life of cheese. Journal of Dairy Science, 95(11), 6282-6292.
Rostamzad, H., Paighambari, S. Y., Shabanpour, B., Ojagh,S .M., & Mousavi, S. M. (2016). Improvement of fish protein film with nanoclay and transglutaminase for food packaging. Food Packaging and Shelf Life, 7, 1-7.
Sabato, S. F., Ouattara, B., Yu, H., D'aprano, G., Le Tien, C., Mateescu, M. A., & Lacroix, M. (2001). Mechanical and barrier properties of cross-linked soy and whey protein based films. Journal of Agricultural and Food Chemistry, 49(3), 1397-1403.
Schmid, M., Dallmann, K., Bugnicourt, E., Cordoni, D., Wild, F., Lazzeri, A., & Noller, K. (2012). Properties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier properties. International Journal of Polymer Science, 2012, 1-7.
Schmid, M., Krimmel, B., & Noller, K. (2014). Effects of thermally induced denaturation on technological-functional properties of whey protein isolate-based films. Journal of Dairy Science, 97(9), 5315-5327.
Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39(5), 639-644.
Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M. A., Mohammadi, A., Ghasemlou, M., Ojagh, S. M. & Khaksar, R. (2013). Characterization of antioxidant-antimicrobial κ-carrageenan films containing Saturejahortensis essential oil. International Journal of Biological Macromolecules, 52, 116-124.
Tang, C. H., & Jiang, Y. (2007). Modulation of mechanical and surface hydrophobic properties of food protein films by transglutaminase treatment. Food Research International, 40(4), 504-509.
Tang, C. H., Jiang, Y., Wen, Q. B., & Yang, X. Q. (2005). Effect of transglutaminase treatment on the properties of cast films of soy protein isolates. Journal of Biotechnology, 120(3), 296-307.
Trachoo, N., & Mistry, V. V. (1998). Application of ultrafiltered sweet buttermilk and sweet buttermilk powder in the manufacture of nonfat and low fat yogurts. Journal of Dairy Science, 81(12), 3163-3171.
Truong, V. D., Clare, D. A., Catignani, G. L., & Swaisgood, H. E. (2004). Cross-linking and rheological changes of whey proteins treated with microbial transglutaminase. Journal of Agricultural and Food Chemistry, 52(5), 1170-1176.
Ustunol, Z., & Mert, B. (2004). Water Solubility, Mechanical, Barrier, and Thermal Properties of Cross‐linked Whey Protein Isolate‐based Films. Journal of Food Science, 69(3), FEP129-FEP133.
Wakai, M., & Almenar, E. (2015). Effect of the presence of montmorillonite on the solubility of whey protein isolate films in food model systems with different compositions and pH. Food Hydrocolloids, 43, 612-621.
Wang, Y., Liu, A., Ye, R., Wang, W., & Li, X. (2015). Transglutaminase-induced crosslinking of gelatin–calcium carbonate composite films. Food Chemistry, 166, 414-422.
Weng, W., & Zheng, H. (2015). Effect of transglutaminase on properties of tilapia scale gelatin films incorporated with soy protein isolate. Food Chemistry, 169, 255-260.
Wilcox, C. P., & Swaisgood, H. E. (2002). Modification of the rheological properties of whey protein isolate through the use of an immobilized microbial transglutaminase. Journal of Agricultural and Food Chemistry, 50(20), 5546-5551.
Yildirim, M., & Hettiarachchy, N. S. (1998). Properties of Films Produced by Cross‐linking Whey Proteins and 11S Globulin Using Transglutaminase. Journal of Food Science, 63(2), 248-252.
Yildirim, M., Hettiarachchy, N. S., & Kalapathy, U. (1996). Properties of Biopolymers from Cross‐linking Whey Protein Isolate and Soybean 11S Globulin. Journal of Food Science, 61(6), 1129-1132.
Zinoviadou, K. G., Koutsoumanis, K. P., & Biliaderis, C. G. (2010). Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocolloids, 24(1), 49-59.
Zolfi, M., Khodaiyan, F., Mousavi, M., & Hashemi, M. (2014). The improvement of characteristics of biodegradable films made from kefiran–whey protein by nanoparticle incorporation. Carbohydrate Polymers, 109, 118-125.