تهیه نقشه دو بعدی محیط گلخانه به کمک بینایی استریو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی مکانیک ماشین های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 عضو هیات علمی

3 استادیار گروه مهندسی ماشین های کشاورزی، دانشکده مهندسی و فناوری، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

4 استاد گروه مهندسی ماشین های کشاورزی، دانشکده مهندسی و فناوری، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران.

چکیده

ساخت نقشه دو بعدی محیط گلخانه با هدف کنترل خودکار به منظور انجام عملیاتی مانند آبیاری و سم پاشی، با مکان­یابی سکوهای کشت و گلدان­ها امکان پذیر می­باشد. با استخراج تصویر ناهمخوانی از جفت تصویر استریو و انتقال نقاط به فضای سه بعدی، مدل ابر نقطه­ای محیط ایجاد و سپس با تصویر نمودن نقاط بر صفحه XZ و از کنار هم قرار دادن نقشه­های محلی بر مبنای مکان­یابی دیداری، نقشه دو بعدی محیط گلخانه تهیه شد. در این تحقیق به منظور شناسایی و تفکیک سکوهای کشت و گلدان­ها از یکدیگر، تعیین موقعیت گوشه سکوها و محل قرارگیری گلدان­ها به صورت تک نقطه دو بعدی، از مختصات سه بعدی اجزاء محیط استفاد شد. نتایج حاصل از این تحقیق نشان داد که الگوریتم معرفی شده، از مجموع طول سکوها، توانایی شناسایی 26/100 متر، یعنی 05/94 درصد از طول کل سکوها را دارد. همچنین 33/83 درصد از گوشه­های سکوهای کشت با میانگین خطای 09/0 متر و میانگین مربع خطای 009/0 متر توسط الگوریتم ارائه شده، شناسایی شدند. از نقشه دو بعدی گلخانه نتیجه گرفته شد که الگوریتم معرفی شده توانایی تشخیص و تعیین موقعیت 10/92 درصد از گلدان­ها را با میانگین خطای 07/0 متر و میانگین مربع خطای 006/0 متر دارا می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Creation of two-dimensional greenhouse environment map using stereo vision

نویسنده [English]

  • Amin Nasiri 1
1
2
3
4
چکیده [English]

In this research for detection and separation cultivation platforms and flowerpots from each other, localization the corner of platforms and position of the flowerpots to form of two-dimensional point and creation two-dimensional map of greenhouse, used three-dimensional coordinates of environment components. Results obtained from this research, showed that the proposed algorithm can detect 100.26 m, on other hand, 94.05% of total length of platform. 83.33% of the corners of culture platforms with the average error of 0.09 meter and mean squared error of 0.009 meter were detected by the proposed algorithm. From the two-dimensional map of greenhouse was resulted that the proposed algorithm in this research has the detection capability and localization of 92.10% of the flowerpots with the average error of 0.07 meter and mean squared error of 0.006 meter.

کلیدواژه‌ها [English]

  • Cultivation platform
  • Pot
  • Three-dimensional coordinates
  • Visual odometry
Bay, H., Ess, A., Tuytelaars, T. & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer vision and image understanding, 110, 346-359.
Benson, E., Reid, J. & Zhang, Q. (2003). Machine vision–based guidance system for an agricultural small–grain harvester. Transactions of the ASAE, 46, 1255–1264.
Bhatti, A. (2011) Advances in theory and applications of stereo vision. Croatia: InTech.
Bradski, G. & Kaehler, A. (2008) Learning OpenCV: Computer vision with the OpenCV library (First ed.). Sebastopol, CA: O'Reilly Media, Inc.
Brosnan, T. & Sun, D.-W. (2002). Inspection and grading of agricultural and food products by computer vision systems—a review. Computers and electronics in agriculture, 36, 193-213.
Cantón, J., Donaire, J. & Sánchez-Hermosilla, J. (2012). Stereovision based software to estimate crop parameters in greenhouses. In: Proceeding of Infomation Technology, Automation and Precision Farming. International Conference of Agricultural Engineering-CIGR-AgEng: Agriculture and Engineering for a Healthier Life. 8-12 July., Valencia, Spain, pp. P-0852.
Civera, J., Grasa, O. G., Davison, A. J. & Montiel, J. (2009). 1-point RANSAC for EKF-based structure from motion. In: Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems. 11-15 October., Louis, USA, pp. 3498-3504.
Craig, J. J. (2005). Introduction to robotics: mechanics and control. Pearson Prentice Hall. Upper Saddle River, New Jersey, USA.
Cyganek, B. & Siebert, J. P. (2009) An Introduction to 3D Computer Vision Techniques and Algorithms (First ed.). United Kingdom: John Wiley & Sons, Ltd.
Hirschmuller, H. (2005). Accurate and efficient stereo processing by semi-global matching and mutual information. In: Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). 20-26 June., San Diego, CA, USA, pp. 807-814.
Kise, M. & Zhang, Q. (2008). Development of a stereovision sensing system for 3D crop row structure mapping and tractor guidance. Biosystems Engineering, 101, 191-198.
Kise, M., Zhang, Q. & Más, F. R. (2005). A stereovision-based crop row detection method for tractor-automated guidance. Biosystems Engineering, 90, 357-367.
Kitt, B., Geiger, A. & Lategahn, H. (2010). Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme. In: Proceeding of Intelligent Vehicles Symposium. 21-24 June., University of California, San Diego, CA, USA, pp. 486-492.
McCarthy, C. L., Hancock, N. H. & Raine, S. R. (2010). Applied machine vision of plants: a review with implications for field deployment in automated farming operations. Intelligent Service Robotics, 3, 209-217.
Milella, A., Nardelli, B., Di Paola, D. & Cicirelli, G. (2009). Robust Feature Detection and Matching for Vehicle Localization in Uncharted Environments. In: Proceeding of the IEEE/RSJ IROS Workshop Planning, Perception and Navigation for Intelligent Vehicles. 30 June., Saint Louis, USA, pp. 11-16.
Rosell, J. & Sanz, R. (2012). A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture, 81, 124-141.
Rovira-Más, F., Zhang, Q. & Reid, J. (2005). Creation of three-dimensional crop maps based on aerial stereoimages. Biosystems Engineering, 90, 251-259.
Rovira-Más, F., Zhang, Q. & Reid, J. F. (2008). Stereo vision three-dimensional terrain maps for precision agriculture. Computers and Electronics in Agriculture, 60, 133-143.
Slaughter, D., Giles, D. & Downey, D. (2008). Autonomous robotic weed control systems: A review. Computers and electronics in agriculture, 61, 63-78.
Torii, T. (2000). Research in autonomous agriculture vehicles in Japan. Computers and electronics in agriculture, 25, 133-153.
Trucco, E., and A. Verri. 1998. Introductory techniques for 3-D computer vision. Prentice Hall. Englewood Cliffs, New Jersey, USA.
Xia, C., Li, Y., Chon, T.-S. & Lee, J.-M. (2009). A stereo vision based method for autonomous spray of pesticides to plant leaves. In: Proceeding of Industrial Electronics, ISIE. IEEE International Symposium on. 5-8 July., Seoul Olympic Parktel, Seoul, Korea, pp. 909-914.
Yeh, Y.-H. F., Lai, T.-C., Liu, T.-Y., Liu, C.-C., Chung, W.-C. & Lin, T.-T. (2014). An automated growth measurement system for leafy vegetables. Biosystems Engineering, 117, 43-50.
Zhang, Z. (1999). Flexible camera calibration by viewing a plane from unknown orientations. In: Proceeding of Computer Vision, The Seventh IEEE International Conference on. 20-27 Sept., Kerkyra, Greece, pp. 666-673.