تجزیه و تحلیل و مدل سازی انرژی و عملکرد تولید نخود دیم در شهرستان بوکان

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه تهران

چکیده

این مطالعه به منظور تجزیه و تحلیل و مدل­سازی انرژی و عملکرد نخود دیم با بهره­گیری از سامانه استنتاج فازی-عصبی تطبیقی (انفیس) در جریان تولید نخود دیم در شهرستان بوکان انجام شده است. داده ها از 70 تولیدکننده نخود با استفاده از مصاحبه رو در رو با کشاورزان و تکمیل پرسشنامه‌های تخصصی جمع آوری شدند. مساحت واحدهای تولیدی بین 2 تا 10 هکتار بود. نهاده­های ورودی شامل نیروی انسانی، ماشین­ها، بذر، سوخت دیزل و سموم شیمیایی و خروجی نخود و کاه بود. مصرف هیچ نوع کودی در مناطق تحقیقاتی مشاهده نشد. بررسی نتایج نشان داد که کل انرژی مصرفی در جریان تولید 909/8856 مگاژول برهکتار و انرژی تولیدی کل (دانه+کاه) 976/15305 مگاژول برهکتار می­باشد. کارایی انرژی و بهره­وری انرژی برای تولید نخود به ترتیب 07/1 و 073/0 کیلوگرم برمگاژول و برای نخود+کاه به ترتیب 72/1 و 170/0 کیلوگرم برمگاژول بودند. مهم­ترین نهاده ورودی سوخت دیزل با سهم 4/64 درصد از کل انرژی مصرفی بود. سامانه استنتاج فازی-عصبی تطبیقی که ترکیبی از سامانه­های فازی و شبکه­های عصبی مصنوعی است یکی از روش­های هوش مصنوعی است که مزایای بسیار زیادی از جمله توانایی رفع ابهامات داده­ها را دارد. شاخص­های آماری ضریب همبستگی (R)،  ریشه میانگین خطا (RME) و ریشه میانگین مربعات خطا (RMSE) بهترین مدل انفیس برای انرژی نخود به ترتیب 94/0، 027/0 و 08/369(  MJ.ha1)  و برای عملکرد نخود به ترتیب 95/0، 025/0 و 58/21MJ.ha1)  ) به دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis and modeling of energy and production of dryland chickpea in the city of Bukan

نویسندگان [English]

  • omid ghaderpour
  • shahin rafiee
tehran university
چکیده [English]

This study aimed to analyze and modeling of energy and performance of dryland chickpea adaptive neuro-fuzzy inference system utilizes (Anfis) in dryland chickpea production is done in the city of Bukan. Data were collected from 70 producers of chickpeas using face to face interviews with farmers and Completing the questionnaire specialized. size of land was Between 2 and 10 hectares. Input factors include manpower, machinery, seed, fuel and chemical pesticides and output was chickpea and straw. There is no type of fertilizer use in the areas Investigative. The results indicated that the total energy consumption during production and energy 7760.441 Mj.ha-1 total production (grain-straw) is 15,305.976 Mj.ha-1. energy ratio and energy efficiency of 1.229 and 0.0836, respectively, for the production of chickpea and chickpea-straw, respectively, were 1.972 and 0.1946 MJ kg-1. The main entrance was diesel fuel with a share of 73.49% of the total energy consumption. Statistical indices R, RME and RMSE for the best model for energy Anfis chickpea respectively 0.94, 0.02 and 369.08, respectively and for the Performance chickpea, 0.95 , 0.02 and 21.58 respectively.

کلیدواژه‌ها [English]

  • ENERGY ANALYSIS
  • Energy Modeling and Performance
  • ANFIS
  • Dryland chickpea
  • Energy Ratio
Ahmadi, M. & Aghaalikhani, M. (2012). Analysis of Energy Consumption of Cotton (Gossypium hirsutum L) in the province to provide a solution for increasing productivity of resources. Journal of Agricultural Ecology, 4(2), 151-158. (In Farsi)
ALAM, M. S., ALAM, M. R. & ISLAM, K. K. (2005). Energy flow in agriculture: Bangladesh. American Journal of Environmental Sciences, 1(3): 213-220.
Anonymous. Department of Jihad-e-Agriculture of Iran. (2013). Annual agricultural statistics. From  http:// www.amar.maj.ir.
Anonymous. Statistical Center of Iran. (2010). The estimated population of each city. From http://www.amar.org.ir.
Canakci, M., Topakci, M., Akinci, I., & Ozmerzi, A. (2005). Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy Conversion and Management46(4), 655-666.
 Ceccon, P., Coiutti, C., & Giovanardi, R. (2002). Energy balance of four farming systems in north-eastern Italy. Italian Journal of Agronomy6(1), 73-83.
Chamsing, A., Salokhe, V. M., & Singh, G. (2006). Energy consumption analysis for selected crops in different regions of Thailand. Agricultural Engineering International: The CIGR EJournal.
Erdal, G., Esengün, K., Erdal, H., & Gündüz, O. (2007). Energy use and economical analysis of sugar beet production in Tokat province of Turkey.Energy32(1), 35-41.
 Fallah, S., Ehsanzadeh, P. & Daneshvar, M. (2005). Effects of supplemental irrigationand plant densityon yield andyield components of chickpea cultivasion Khorramabad. Iranian Journal of Agricultural Sciences, 36(3). (In Farsi)
Hatirli, S. A., Ozkan, B., & Fert, C. (2005). An econometric analysis of energy input–output in Turkish agriculture. Renewable and Sustainable Energy Reviews9(6), 608-623.
Hemmatian A., Bakhtyari AA., Moradipur M. & Zareie Shahamat, E. (2013). Evaluation of chickpea cultivation energetic and energy and economic indicators in Kermanshah and Hamadan. In: 8th National Congress of Agricultural Machinery Engineering and mechanization, 29-31 Jan., Ferdowsi University of Mashhad, Mashhad, Iran, (In Farsi).
Heidari, M. D. & Omid, M. (2011) Energy use patterns and econometric models of major greenhouse vegetable productions in Iran. Energy, 36(1),  220-225.
Kitani, O., Jungbluth, T., Peart, R. M., & Ramdani, A. (1999). CIGR handbook of agricultural engineering: Energy and biomass engineering (V. 5). ASAE.
Komleh, S. P., Keyhani, A., Rafiee, S. H., & Sefeedpary, P. (2011). Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. Energy36(5), 3335-3341.
Koocheki, E. & Hosseini, MR. (1994)Energy efficiency in agroecosystems. University Press of Mashhad, (pp317). (In Farsi)
Khoshnevisan, B., Rafiee, S., Iqbald, J., Shamshirbande, S., Omid, M., Anuarf, N.B. and Abdul Wahabg, A.W. (2015). A Comparative Study between Artificial Neural Networks and Adaptive Neuro-fuzzy Inference Systems for Modeling Energy Consumption in Greenhouse Tomato Production-A Case Study in Isfahan Province. Journal of Agricultural Science and Technology, 17(1): 49-62.
Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2014). Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system. Measurement47, 521-530.
 Khoshnevisan, B., Rafiee, S., Omid, M., Yousefi, M., & Movahedi, M. (2013). Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy52, 333-338.
Majnoun Hosseini, N. (2008)Grain legume production. Tehran Jihad-e-Daneshgahi publisher. Tehran‏, (pp 294). (In Farsi)
Singh, H., Mishra, D., & Nahar, N. M. (2002). Energy use pattern in production agriculture of a typical village in arid zone, India––part I. Energy Conversion and Management43(16), 2275-2286.
Mandal, K. G., Saha, K. P., Ghosh, P. K., Hati, K. M., & Bandyopadhyay, K. K. (2002). Bioenergy and economic analysis of soybean-based crop production systems in central India. Biomass and Bioenergy23(5), 337-345.
Mobtaker, H. G., Keyhani, A., Mohammadi, A., Rafiee, S., & Akram, A. (2010). Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agriculture, Ecosystems & Environment137(3), 367-372.
Mollaee, S. & Afzalinia, K. (2012). Determination of energy production in the agricultural plains of wheat and canola Namdan Eghlid. Journal of Plant Akvfyzyvlvzhy, 4(1). (In Farsi)
 
Moradi, R., Koocheki, A., Ghorbani, R., Mondani, F., & Alizade, Y. (2011). Pulses production systems in term of energy use efficiency and economical analysis in Iran. International Journal of Energy Economics and Policy1(4), 95-106.
Mohammadi, A., & Omid, M. (2010). Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran.Applied Energy87(1), 191-196.
Navidshad, B. & Jafari Sayyadi, A. (2012) Animal nutrition (7th ed.). (translation). Press Haghshenas. (In Farsi)
Ozkan, B., Akcaoz, H., & Karadeniz, F. (2004). Energy requirement and economic analysis of citrus production in Turkey. Energy Conversion and Management45(11), 1821-1830.
Petković, D., Pavlović, N.T., Shamshirband, S., Kiah, M.L.M., Anuar, N.B. and Idris, M.Y.I. (2014). Adaptive neuro-fuzzy estimation of optimal lens system parameters. Optics and Lasers in Engineering, 55: 84-93.
Pishgar-Komleh, S. H., Sefeedpari, P., & Rafiee, S. (2011). Energy and economic analysis of rice production under different farm levels in Guilan province of Iran. Energy36(10), 5824-5831.
Raee Jadidi, M., Homayoonifar, M., Saboohi Sabooni, M. & Kheradmand,V. (2010). Efficiency and energy efficiency in the production of tomatoes (Case study: city of Marand). Journal of Agricultural Economics and Development (Agricultural Science and Technology), 24(3), 363-370. (In Farsi)
Tabar, I. B., Keyhani, A., & Rafiee, S. (2010). Energy balance in Iran's agronomy (1990–2006). Renewable and Sustainable Energy Reviews14(2), 849-855.
Yaldiz, O., Ozturk, H. H., Zeren, Y., & Bascetincelik, A. (1993). Energy usage in production of field crops in Turkey. In: 5th International Congress on Mechanisation and Energy Use in Agriculture, October., Kusadas, Turkey, pp. 11-14.
Yilmaz, I., Akcaoz, H., & Ozkan, B. (2005). An analysis of energy use and input costs for cotton production in Turkey. Renewable Energy, 30(2), 145-155.