تشخیص رطوبت و درجه بریکس هویج با استفاده از طیف‌سنجی فروسرخ نزدیک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه مکانیک بیوسیستم- دانشکده کشاورزی - دانشگاه بو علی سینا

2 استادیار گروه بیوسیستم- دانشگاه بوعلی سینا

چکیده

هر چند برای تغییرات زیاد در رطوبت محصول هویج امکان تشخیص و جداسازی آن با روش‏های دیگر همچون پردازش تصویر و یا به صورت دستی امکانپذیر است ولی برای تغییرات کوچک در رطوبت و یا جداسازی بر اساس شیرینی، روش طیف سنجی می​تواند گزینه مناسب​تری باشد. در این مطالعه 100 نمونه هویج به صورت تصادفی انتخاب و با استفاده از دستگاه اسپکتروفتومتری، مدلی برای تخمین رطوبت و شاخص بریکس ریشه‌ها تدوین گردید. پیش پردازش اولیه​ طیف با استفاده از روش‏های تصحیح پراکنش افزاینده (MSC)، مشتق اول و مشتق دوم انجام گرفت. با روش حداقل مربعات جزئی (PLS) مدل مناسب تعیین گردید و مقادیر ضریب تعیین و ریشه میانگین مربعات خطا برای داده‌های آزمون به ترتیب برابر با 92/0 و 13/1 برای تخمین رطوبت و 96/0 و 07/1 برای تخمین درجه بریکس به دست آمد. نتایج نشان داد که طیف سنجی فروسرخ قابلیت تخمین رطوبت و درجه بریکس ریشه‌ها را داشته و می‌توان از آن برای درجه بندی محصول هویج استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Non-destructive determination of moisture content and brix value in carrot using Near infrared spectroscopy (NIRS)

چکیده [English]

One of the most important ways to increase sales and marketability of the agricultural products is the classifying them according to the morphological characteristics and the internal quality. Water content and soluble solid content are two important quality factors of carrot. Although other ways such as image processing can be used for classifying, the spectroscopic method can be a better choice for measuring the internal quality than others. In this research optical method based on near infrared spectroscopy (900-1600 nm) has been used to determine moisture content and brix index in carrot. A total of 60 samples were used for the modeling, whereas 40 samples were used for the calibration set and 20 samples were used for prediction set. Four pre-processing methods, including average smoothing, multiplicative scatter correction (MSC), first and second derivatives, were applied to improve the predictive ability of the models. Then models were developed by partial least squares (PLS). The correlation coefficient (R2) and root mean square error of prediction (RMSEP) were 0.92 and 1.13 for moisture content, whereas 0.96 and 1.07 for SSC., respectively. The results show that NIR can be used as a rapid method to determine soluble solid content and moisture content in carrot.

کلیدواژه‌ها [English]

  • Carrot
  • Near Infrared
  • Brix value
  • multiplicative scatters correction
Anonymous.(2016). Carrot properties. Retrieved September13,2016,from http://kheg.blogsky.com. (In Farsi)

Augusto, P. & Filho, C. (2009).  Rapid determination of sucrose in chocolate mass using near infrared spectroscopy. Analytica Chimica Acta, (631), 206–211.

Bagherpour, H.,  Minaei, S., Abdollahian Noghabi, M. & Khorasani Fardvani, M. E. (2014) Non-destructive determination of sugar content in root beet by near infrared spectroscopy. Journal of food science technology, 46 (12), 219-228. (In Farsi)

Bureau, S., Ruiz, D., Reich M., Gouble, B., Bertrand, D. & Renard, C. (2009) Rapid and non-destructive analysis of apricot fruit quality using FT-near-infrared spectroscopy. Food Chemistry, (113), 1323–1328.

Clark, C. J., McGlone, V. A., De Silva, H. N., Manning, M. A., Burdon, J., & Mowat, A. D. (2004). Prediction of storage disorders of kiwifruit (Actinidia chinensis) based on visible-NIR spectral characteristics at harvest. Postharvest Biology and Technology, 32(2), 147-158.

Elbatawi, I., Ebaid, M. & Hemeda B. (2008) Determination of Potato Water Content Using Nir Diffuse Reflection Method. Irrigation and Drainage, (254), 1279-1292.

Fernández-Novales, J., López, M. I., Sánchez, M. T., Morales, J., & González-Caballero, V. (2009) Shortwave-near infrared spectroscopy for determination of reducing sugar content during grape ripening, winemaking, and aging of white and red wines. Food Research International, 42(2), 285-291.

He, Y. & Cen, H. (2007) Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science & Technology, (18), 72-83.

Horwitz, W., Senzel, A., Reynolds, H., & Park, D. L. (1990). Official methods of analysis of the Association of Official Analytical Chemists. Retrieved September 15, 2016, from ttp://www.cabdirect.org.

Kawano, S. & Abe, (1995) Development of a calibration equation with temperature compensation for determining the Brix value in intact peaches. Near Infrared Spectroscopy, (3), 211-218.

Liu, Y., Sun, X., Zhou, J., Zhang, H. & Yang, C. (2010). Linear and nonlinear multivariate regressions for determination sugar content of intact Gannan navel orange by Vis_NIR diffuse reflectance spectroscopy. Mathematical and Computer Modelling, (51), 1438-1443.

Lu, R. (2001) Predicting firmness and sugar content of sweet cherries using near-infrared diffuse reflectance spectroscopy. Transactions of the ASAE, (44), 1265-1271.

Mireei S.A., Mohtasebi S.S., Masoodi R., Rafiei S.H., Arabanian A.S. (2010) Application of FT-NIR spectroscopy in nondestructive maturity determination of Shahani date fruit. Iranian Journal of Biosystem Engineering, 41(2), 113-120. (In Farsi)

Park, B., Abbott, J.A., Lee, K.J., Choi, C.H.  & Choi, K.H. (2003). Near-infrared diffuse reflectance for quantitative and quantitative measurement of soluble solids and firmness of delicious and gala apples. Transactions of the ASAE, (46), 1721-1731.

Sharma, H.K., Kaur, J., Sarkar, B.C., Singh, C., Singh, B. & Shitandi, A.A.( 2006) Optimization of pretreatment conditions of carrots to maximize juice recovery by response surface methodology. J. Engineering Science Technology, (1), 158-165.

Tigabu, M.  & Odén, P.C. (2002) Multivariate classification of sound and insect infested seeds of a tropical multipurpose tree. Cordia Africana., with near infrared reflectance spectroscopy. Near Infrared Spectroscopy, (10), 45–51.

Yan-de, L. & Yi-bin, Y. (2004). Measurement of sugar content in Fuji apples by FT-NIR spectroscopy. Journal of Zhejiang University Science, 5(6),

 

651-655.