کاربرد روش طیف‌سنجی مرئی و فرو سرخ نزدیک در تشخیص آلودگی خاک به کادمیوم و سرب با مدل سازی رگرسیونی و شبکه عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان

2 دانشگاه بوعلی سینا همدان

چکیده

آلودگی خاک به عناصر سنگین می‌تواند به‌طور مستقیم و غیرمستقیم بر سلامتی موجودات زنده اثر بگذارد. با افزایش غلظت فلزات در خاک، احتمال ورود به گیاهان نیز افزایش می‌یابد. در نتیجه تجمع آن‌ها در محصولات کشاورزی سلامتی انسان را به مخاطره‌ خواهد انداخت. هدف از این مطالعه، تعیین توزیع کادمیوم و سرب در خاک سطحی شهرستان بهار در استان همدان و ارزیابی وضعیت آلودگی این فلزات در خاک مزارع کشت سیب‌زمینی می‌باشد. بدین منظور با استفاده از روش نمونه‌برداری سیستماتیک، نمونه‌های خاک در عمق cm45-0 برداشت گردید. از یک روش سریع و دقیق داده‌برداری بر پایه طیف‌سنجی مرئی و فروسرخ نزدیک (VIS-NIR) در محدوده طیف 370 -2000 نانومتر استفاده‌ شد. طیف بازتابی تعداد 95 نمونه خاک برای تخمین تجمع کادمیوم و سرب جمع آوری گردید. برای کاهش عوامل متداخل از طیف نمونه‌های خاک، روش‌های پیش‌پردازش MSC ،SNV و مشتق بکار رفت. نتایج نشان داد آلودگی‌ها که گاهی به علت ترکیب آب آبیاری با فاضلاب شهری صورت می‌گیرد، در خاک سطحی تجمع دارند. پیش بینی فلزات سنگین با روش رگرسیون حداقل مربعات جزئی و شبکه عصبی مصنوعی انجام شد (R2PLSR=0/90, R2BPNN=0/95).  نتایج نشان می‌دهد شبکه عصبی بازگشتی و طیف‌سنجی VIS-NIR برای پیش‌بینی میزان کادمیوم و سرب موجود در خاک سطحی مناسب می‌باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of visible and near-infrared spectroscopy for identification of cadmium (Cd) and lead (Pb) pollution in soil using regression models and ANN

نویسندگان [English]

  • Hosna Mohammadi Monavar 1
  • Hosein Bagher pour 2
1 Assitant Professor, Biosystem mechanic Department, Faculty of Agriculture, Bualisina University of Hamedan
2 Bualisina University of Hamedan
چکیده [English]

The aims of this study were to determine the distribution of cadmium and lead in topsoil in Bahar city of Hamadan and to evaluate pollution of these metals in agricultural lands which cultivated potato. Therefore, systematic sampling was used, soil samples were taken from depth 0-45 cm. Visible and near-infrared (VIS-NIR) spectroscopy was provided as a quick and accurate method in 370 -2000 nm range. The reflectance spectrum of 95 soil samples were collected to estimate the concentration of cadmium and lead. To reduce noise on soil spectra, MSC, SNV and derivative preprocessing methods were used. The results showed contamination usually occurs due to combinations of sewage irrigation, it accumulates in the topsoil. Prediction of heavy metals were estimated by partial least squares regression and artificial neural network (R2PLSR = 0/90, R2BPNN = 0/95).

کلیدواژه‌ها [English]

  • Soil heavy metals
  • Partial least squares regression
  • artificial neural network
  • VIS-NIR spectroscopy
Agricultural Chemistry Committee of China, (1983). Conventional methods of soil and agricultural chemistry analysis. Science Press, Beijing.
Agricultural Chemistry Committee of Japan, (1991). Environmental Quality Standards (EQS) for soil pollution were issued in August 1991. Ministry of the Environment, Japan.
Al-Asadi, R. A. & Mouazen, A. M. (2014). Combining frequency domain reflectometry and visible and near infrared spectroscopy for assessment of soil bulk density. Journal of Soil Tillage Research, 135, 60-70.
Amini, M. Afyuni, M. Khademi, H. Abbaspour, K.C. & Schulin, R. (2005). Mapping risk of cadmium and lead contamination to human health in soils of central Iran. Journal of Science of the Total Environment, 347(1-3), 64-77.
Azimzadeh, B. & Khademi, H. (2013). Estimation of background concentration of selected heavy metals for pollution assessment of surface soils of Mazandaran province, Iran. Journal of Water and Soil, 27(3), 548-559.
Ben-Dor, E. Inbar, Y. & Chen, Y. (1997). The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400-2500 nm) during a controlled decomposition process. Journal of Remote Sensing of Environment, 61, 1-15.
Buddenbaum, H. & Steffens, M. (2012). The effects of spectral pretreatments on chemometric analyses of soil profiles using laboratory imaging spectroscopy. Journal of Applied and Environmental Soil Science, 12, 12-20.
Chang, C. W. Laird, D. A. Mausbach, M. J. & Hurburgh, C. R. (2001). Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Science Society American Journal, 65, 480-490.
Dalal, R. C. & Henry, R. J. (1986). Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry. Soil Science Society American Journal, 50, 120-123.
Daniel, K. W. Tripathi, N. K. & Honda, K. (2003). Artificial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of Lop Buri (Thailand). Journal of Soil Science. 41, 47-59.
Farifteh, J. Van der Meer, F. Atzberger, C. & Carranza, E. J. M. (2007). Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN). Journal of Applied and Environmental Soil Science, 110, 59-78.
Fu, J. Zhou, Q. Liu, J. Liu, W. Wang, T. & Zhang, Q. (2008). High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health.  Journal of Chemosphere, 71(7), 1269–1275.
Gholizadeh, A. Bor_uvka, L. Va_s_at, R. Saberioon, M. Klement, A. Kratina, J. Tejnecký, V. & Abek, O. (2015). Estimation of potentially toxic elements contamination in anthropogenic soils on a brown coal mining dumpsite by reflectance spectroscopy: a case study. Journal of PLoS One, 10, 1147-1157.
Goldshleger, N. Chudnovsky, A. & Ben-Dor, E. (2012). Using reflectance spectroscopy and artificial neural network to assess water infiltration rate into the soil profile. Journal of Applied and Environmental Soil Science, 9.
Hively, W. D. McCarty, G. W. Reeves, J. B. Lang, M. W. Oesterling, R. A. & Delwiche, S. R. (2011). Use of airborne hyperspectral imagery to map soil properties in tilled agricultural Fields. Journal of Applied and Environmental Soil Science, 13.
Kemper, T. & Sommer, S. (2002). Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Journal of Environmental Science and Technology, 36, 2742-2747.
Kooistra, L. Wehrens, R. Leuven, R. S. E. W. & Buydens, L. M. C. (2001). Possibilities of visible near-infrared spectroscopy for the assessment of soil contamination in river floodplains. Journal of Analatica Chimica Acta, 446, 97-105.
Liu, X. & Liu, J. (2013). Using short wave visible-near infrared reflectance spectroscopy to predict soil properties and content. Journal of Spectroscopy Letters, 47, 729-739.
Malley, D. F. & Williams, P. C. (1997). Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter. Journal of Environmental Science and Technology, 31, 3461-3467.
McCleod, S. (1973). Studies on wet oxidation procedures for the determination of organic carbon in soil. In‘Notes on soil techniques’. pp. 73–79. (CSIRO Division of Soils: Melbourne)
Mehra, O. P. & Jackson, M. L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Journal of Clays and Clay Minerals, 7, 317–327.
Mohajer, R. Salehi, M. H. & Mohammadi, J. (2014). Lead and Cadmium Concentration in Agricultural Crops (Lettuce, Cabbage, Beetroot, and Onion) of Isfahan Province, Iran. Journal of Health & Environment, 7(1), 1-10. (In Farsi).
Moros, J. Vallejuelo, S. F. O. Gredilla, A. Diego, A. Madariaga, J. M. Garrigues, S. & Guardia, M. (2009). Use of reflectance infrared spectroscopy for monitoring the metal content of the estuarine sediments of the Nerbioi-Ibaizabal River (Metropolitan Bilbao, Bay of Biscay, Basque Country). Journal of Environmental Science and Technology, 43, 9314-9320.
Pandit, C. M. Filippelli, G. M. & Li, L. (2010). Estimation of heavy-metal contamination in soil using reflectance spectroscopy and partial least-squares regression. International Journal of Remote Sensing, 31, 4111-4123.
Peralta-Videa, J. R. Lopez, M. L. Narayan, M. Saupe, G. & Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. International Journal of Biochemistry and Cell Biology, 41, 1665-1677.
Ren, H. Y. Zhuang, D. F. Singh, A. N. Pan, J. J.  Qiu, D. S. & Shi, R. H. (2009). Estimation of As and Cu contamination in agricultural soils around a mining area by reflectance spectroscopy: a case study. Journal of Pedosphere 19, 719-726.
Rinnan, Å. Berg, F.V.D. Engelsen, S. B. (2009). Review of the most common preprocessing techniques for near-infrared spectra. Journal of TrAC Trends in Analytical Chemistry, 28, 1201-1222.
Satarug, S. Garrett, S. H.  Sens, M. A. & Sens, D. A. (2010). Cadmium, environmental exposure, and health outcomes. Journal of Environmental Health Perspective, 118, 182-190.
Shi, T. Chen, Y. Liu, Y. & Wu, G. (2014). Visible and near-infrared reflectance spectroscopy-An alternative for monitoring soil contamination by heavy metals. Journal of Hazardous Materials, 265, 166-176.
Siebielec, G. McCarty, G. W. Stuczynski, T. I. & Reeves, J. B. (2004). Near- and mid-infrared diffuse reflectance spectroscopy for measuring soil metal content. Journal of Environmental Quality 33, 2056e2069.
Sposito, G. Lund, L. J. & Chang, A. C. (1982). Trace metal chemistry in arid zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Science Society of America Journal, 46, 260-264.
Stenberg, B. & Rossel, R. A. V. (2010). Diffuse reflectance spectroscopy for higher solution soil sensing. In: Viscarra Rossel, R. A. McBratney, A. B. Minasny, B. (Eds.), Proximal Soil Sensing. Springer, Netherlands, pp. 29-47.
Tchounwou, P. Yedjou, C. Patlolla, A. & Sutton, D. (2012). Heavy metal toxicity and the environment. In: Luch, A. (Ed.), Molecular, Clinical and Environmental Toxicology. Springer Basel, pp. 133-164.
Viscarra Rossel, R. A. Walvoort, D. J. J. McBratney, A. B. Janik, L. J. Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Journal of Geoderma, 131, 59-75.
Volkan Bilgili, A. Van Es, H. M. Akbas, F. Durak, A. & Hively, W. D. (2010). Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semiarid area of Turkey. Journal of Arid Environments, 74, 229-238.
Wold, S. Antti, H. Lindgren, F. & Ohman, J. (1998). Orthogonal signal correction of near-infrared spectra. Journal of Chemometrics and Intelligent Laboratory Systems, 44, 175-185.
Wu, Y. Z. Chen, J. Ji, J. F. Tian, Q. J. & Wu, X. M. (2005). Feasibility of reflectance spectroscopy for the assessment of soil mercury contamination. Journal of Environmental Science and Technology, 39, 873-878.