مقایسه الگوریتم‌های تشخیص نقاط ویژه تصاویر در فضاهای رنگ مختلف به منظور تهیه نقشه سه بعدی درختان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 دانشیار گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

عملیات کشاورزی در باغات مانند سم­پاشی، آبیاری و ... در زمینه کشاورزی دقیق و رباتیک کشاورزی وابستگی زیادی به شکل تاج درخت و ساختار آن دارد. بنابراین داشتن مدل سه­بعدی و نقشه عمق درختان می­تواند مفید باشد. یکی از روش­های ایجاد مدل سه­بعدی، استفاده از روش بینایی استریو است. مهمترین مرحله در این روش، تعیین نقاط متناظر است. برای انجام این کار ابتدا باید نقاط ویژه در هر تصویر شناسایی شوند. الگوریتم­های مختلفی بدین منظور نوشته شده است. در این تحقیق شش الگوریتم Harris-Stephens، Minimum eigenvalue، MSER، FAST، SURF و BRISK در فضاها و مولفه های RGB، G، HSV، H، YCbCr، Y، NTSC، Lab و a بررسی و مقایسه شد. نتایج نشان داد که الگوریتم SURF بهترین عملکرد را داشت. نقاط ویژه­ای که این الگوریتم تشخیص داد در اکثر فضاها ثابت بود که نشان از پایداری این الگوریتم در فضاهای مختلف دارد. بعد از الگوریتم SURF بهترین عملکرد را الگوریتم MSER داشت. این الگوریتم محصولات درخت را به عنوان نقاط ویژه تشخیص داد. اگر چه تعداد این نقاط کم است اما درصورتی که نتوان نقاط گوشه را در دو تصویر با هم مطابقت داد، از این نقاط می­توان به عنوان نقاط مشترک جهت تطابق استفاده کرد. الگوریتم­ها در فضاها و مولفه­های HSV، H، YCbCr و NTSC بهترین عملکرد را داشتند و در فضای RGB و Y از نظر تعداد نقاط ویژه تشخیص داده شده پایدار­تر عمل کردند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of feature points detection algorithms in different color spaces in order to create 3D map of trees

نویسنده [English]

  • Ayoub Jafari Malekabadi 1
1 PHD Student, Department of Biosystems Engineering, Ferdowsi University of Mashhad
2
چکیده [English]

One method of creating a 3D model is stereo vision. The most important problem in this method is the corresponding points. In this study, 6 algorithms included Harris-Stephens, Minimum eigenvalue, MSER, FAST, SURF and BRISK were compared in RGB, G, HSV, H, YCbCr, Y, NTSC, Lab and a spaces. The results showed that SURF algorithm had the best performance. Detected feature points by this algorithm were fix in most spaces, so this algorithm is stable in different spaces. After SURF algorithm, MSER algorithm had the best performance. This algorithm detected tree crops as feature points. Although the number of these points is low, but if cannot be matched corner points in two images together, these points can be used to match as common points (keypoints). Algorithms had the best performance in the HSV, H, YCbCr and NTSC spaces and they were stable in RGB and Y spaces in terms of the number of detected feature points.

کلیدواژه‌ها [English]

  • : Tree
  • Stereo Vision
  • feature points detection algorithms
  • Color Spaces
  • SURF and MSER
Abdollahifard, M.J. (2009). View interpolation for three dimensional face modling. Msc thesis, Amirkabir University of Technilogy. Iran. (In Farsi).
Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). SURF: Speeded Up Robust Features. Computer Vision and Image Understanding (CVIU), 110 (3), 346-359.
          Bhatti A. (2012). Current Advancements in Stereo Vision. Published by InTech. Printed in Croatia.
Blas, M.R., and Blanke, M. (2011). Stereo vision with texture learning for fault-tolerant automatic baling. Computers and Electronics in Agriculture 75, 159-168.
Bouguet, J.Y. Camera Calibration Toolbox for Matlab. (2004).Computational Vision at the California Institute of Technology.
Bradski, G., and Kaehler, A. (2008). Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly Media, USA.
Canclini, A., Cesana, M., Redondi, A., Tagliasacchi, M., Ascenso, J., Cilla, R. (2013). Evaluation of low-complexity visual feature detectors and descriptors. 18th International Conference on Digital Signal Processing, 1–7.
Darvish Zadeh Varcheie, P. & Aghaizadeh Zorofi, R. (2006).A automatic method for camera calibration. 9TH Iranian student conference on electrical engineering. Tehran University, Tehran. (In Farsi).
Gil, E., Escolà, A., Rosell, J.R., Planas, S., Val, L. (2007). Variable rate application of plant protection products in vineyard using ultrasonic sensors. Crop Protection 26, 1287–1297.
Harris, C., and Stephens, M. (1988). A combined corner and edge detector. In Proceedings of 4th Alvey Vision Conference, pages 147–151.
Heikkila, J., and Silven, O. (1997). A four-step camera calibration procedure with implicit image correction,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1106–1112.
Işık, S., and Ozkan, K. (2015). A comparative evaluation of well-known feature detectors and descriptors. International Journal of Applied Mathematics, Electronics and Computers. 3(1), pp. 1-6.
Lati, R.N., Filin, S., and Eizenberg, H. (2013). Estimating plant growth parameters using an energy minimization-based stereovision model. Computers and Electronics in Agriculture 98, 260-271.
Leutenegger, S., Chli, M. and Siegwart, R. (2011). BRISK: Binary Robust Invariant Scalable Keypoints. Proceedings of the IEEE International Conference on Computer Vision (ICCV).
Li, L., Huang, W., Yu-Hua Gu, I., and Tian, Q. (2004). Statistical modeling of complex backgrounds for foreground object detection, IEEE Trans. on Image Processing, vol. 13, no. 11, pp. 1459-1472.
Llorens, J., Gil, E., Llop, J., Escolà, A. (2010). Variable rate dosing in precision viticulture: use of electronic devices to improve application efficiency. Crop Protection 29, 239–248.
Matas, J., Chum, O., Urban, M., and Pajdla, T.  (2002). Robust wide-baseline stereo from maximally stable extremal regions, Proc. of British Machine Vision Conference, 384-396.
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., and Van Gool, L. (2005). A comparison of affine region detectors. International Journal of Computer Vision 65(1/2), pp.43-72.
Nister, D., and Stewenius, H. (2008). Linear Time Maximally Stable Extremal Regions. European Conference on Computer Vision, 183-196.
Panchal, P.M., Panchal, S.R., and Shah S.K. (2013). A comparison of SIFT and SURF. International Journal of Innovative Research in Computer and Communication Engineering. Vol. 1, Issue 2, pp. 323-327.
Rosell, J.R., and Sanz, R. (2012). A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture, 81, 124-141.
Rosten E., and Drummond, T. (2005). Fusing Points and Lines for High Performance Tracking. Proceedings of the IEEE International Conference on Computer Vision Vol. 2: pp. 1508-1511.
Rovira-Mas, F., Zhang, Q., and Reid, J. (2008). Stereo vision three-dimensional terrain maps for precision agriculture. Computers and Electronics in Agriculture, 60 (2), 133–143.
Saipullah, Kh., Ismail, N.A., Anuar, A., and Sarimin, N. (2013). Comparison of feature extractors for real-time object detection on android smartphone. Journal of Theoretical and Applied Information Technology. Vol. 47 No.1, pp. 135-142.
Shi, J., and Tomasi, C. (1994). Good Features to Track. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600.
Solanelles, F., Escolà, A., Planas, S., Rosell, J.R., Camp, F., Gracia, F. (2006). An electronic control system for pesticide application proportional to the canopy width of tree crops. Biosystems Engineering 95 (4), 473–481.
Szeliski, R. (2010). Computer Vision Algorithms and Applications, London. Springer.
Yeh, Y.-H.F., Lai, T.-C., Liu, T.-Y., Liu, C.-C., Chung, W.-C., Lin, T.-T. (2014). An automated growth measurement system for leafy vegetables. Biosystems Engineering 117, 43-50.
Zang, Q., and Klette, R. (2004). Robust background subtraction and maintenance. In Proc. of the 17th Int. Conf. on Pattern Recognition, 2, 90-93.