تکنیک تصویر برداری ابرطیفی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکتری/پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 دکتری، طراحی و ساخت، مکاترونیک

3 عضو هیئت علمی/ پردیس کشاورزی و منابع طبیعی دانشگاه تهران

4 عضو هیئت علمی/ موسسه تحقیقات فنی و مهندسی کشاورزی کرج

چکیده

امروزه تقاضا برای محصولات با کیفیت بالا افزایش یافته و استانداردهای سختگیرانه‌ای برای سلامت آنها وضع می شود. لذا برای ارتقاء صادرات انواع محصولات کشاورزی، استفاده از فن آوری های پیشرفته پس از برداشت، برای تعیین سریع تر، موثرتر و دقیق تر کیفیت و سلامت محصولات ضروری می باشد. در این تحقیق، روش تصویربرداری ابرطیفی در محدوده 400 تا 1000 نانومتر، برای تشخیص سیب های آفت زده توسط کرم سیب، بکار برده شده است. پس از تهیه نمونه های آفت زده و انتقال آنها به آزمایشگاه، تصاویر تحت شرایط کنترل شده گرفته شدند. سپس طیف بازتابی میانگین از نواحی مطلوب استخراج و پیش پردازش گردیده و در نهایت با استفاده از چندین تکنیک یادگیری ماشین شامل تحلیـل تفکیک خطی، k-نزدیکترین همسایه و درخت تصمیم گیر طبقه بندی نمونه ها انجام گرفت.  نتایج نشان داد جداسازی میوه های آفت زده با نرخ کلاس بندی 96% و 94% برای نمونه های سالم و آفت زده امکان پذیر بوده و بهترین نرخ کلاس بندی برای روش درخت تصمیم گیر بدست آمد. همچنین طول موج های بهینه برای توسعه تصویربرداری چندطیفی استخراج گردیدند. نتایج این پژوهش بیانگر کارآیی بالای تصویر برداری ابرطیفی در جداسازی غیرمخرب سیب های آفت زده برای استفاده در ماشین‌های درجه‌بندی می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Non-destructive Detection of Codling Moth (.Cydia pomonella L) Damage in Apple Fruit Using Hyperspectral Imaging Method

نویسندگان [English]

  • Nader Ekramirad 1
  • ُSeyed Saeid Mohtasebi 3
  • Afshin Eyvani 4
1
2
3
4
چکیده [English]

In this study, Hyperspectral Imaging method in the range of 400-1000nm has been applied to detect infested apples from normal ones. After preparing the infested samples acording to standard and transfering the samples to the lab, the images were taken under controled situation. Afterwards, average relative reflectance was extracted from the region of interest and then was pre-processed. Finaly the average relative reflectance data was classifeid using different machine learning methods including Discriminant Analysis (DA), K-nearest neighbor (KNN) and Decision Tree (DT) techniques. Results showed that classification of infested samples from normal ones was possible with the classification rates of 96% and 94% for normal and infested apples, respectively. The highest classification rate achieved for DA method. Also, the optimum wavelengths were extracted from the spectrum in order to develop Multispectral Imaging system. The results of this research indicate the high performabce of Hyperspectral Imaging Method for non-destructive detection of infested samples for application in apple grading machines.

کلیدواژه‌ها [English]

  • Hyperspectral imaging
  • Discriminant Analysis
  • Decision Tree
  • K-nearest neighbor
  • Apple grading
Amiri, R., Shojaaddini, M., Motazedian, N., & Zibayee, K. (2014). Degree-day and pheromone traps in control timing of codling moth, Cydia pomonella L. (Lepidoptera: Olethreutidae). Agricultural Pest Management, 1(2): 34-40.
Ariana, D. P., & Lu, R. (2008). Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging - Part II. Performance of a prototype. Sensing and Instrumentation for Food Quality and Safety, 2(3), 152-160.
Butz, P., Hofmann, C., & Tauscher, B. (2005). Recent Developments in Noninvasive Techniques for Fresh Fruit and Vegetables Internal Quality Analysis. Journal of Food Science, 70(9), 131-141.
Dyck, V. A. (2010). Rearing codling moth for SIT. FAO Plant Production and Protection.
Greenwood, P. (2000). Pests and diseases. DK Publishing, NY.
Hansen, J. D., Carlton, R., Adams, S., & Lacey, L., A. (2008). Infrared Detection of Internal Feeders of Deciduous Tree Fruits. Journal of Entomology Science, 43(1), 52-56.
Huang, M., & Lu, R. (2010). Apple mealiness detection using hyperspectral scattering technique. Postharvest Biology and Technology, 58(3), 168-175.
Lu, R., )2003(. Detection of bruises on apples using near–infrared hyperspectral imaging. Transactions of the ASAE, 46, 523-535.
Lu, R., & Peng, Y. (2006). Hyperspectral scattering for assessing peach fruit firmness. Biosystems Engineering, 93(2), 161-171.
Lu, R., & Ariana, D. P. (2013). Detection of fruit fly infestation in pickling cucumbers using a hyperspectral reflectance/transmittance imaging system. Postharvest Biology and Technology, 81, 44-50.
Mehl, P. M., Chen, Y. R., Kim, M. S., & Chan, D. E. (2004). Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. Journal of Food Engineering, 61(1), 67-81.
Rady, A., Guyer, D., & Lu, R. (2015). Evaluation of Sugar Content of Potatoes using Hyperspectral Imaging. Food and Bioprocess Technology, 8(5), 995-1010.
Ranjbar Aghdam, H., & Ataran, M. (2014). Biological control of codling moth using parasitoid wasps Trichogramma embryophagumbased on time-degree forecasting models. Biological control of pests and plant diseases. 3(2), 87-96.
Ruiz-Altisent, M., Ruiz-Garcia, L., Moreda, G. P., Lu, R., Hernandez-Sanchez, N., Correa, E. C., & García-Ramos, J. (2010). Sensors for product characterization and quality of specialty crops-A review. Computers and Electronics in Agriculture, 74(2), 176-194
Saranwong, S., Haff, R. P., Thanapase, W., Janhiran, A., Kasemsumran, S., & Kawano, S. (2011). A feasibility study using simplified near infrared imaging to detect fruit fly larvae in intact fruit. J. Near Infrared Spectrosc., 19, 55-60.
Schatzki, T. F., Haff, R. P., Young, R., Can, I., Le, L-C., & Toyofuku, N. (1997). Defect detection in apples by means of X-ray imaging. Transactions of the ASAE,  40(5), 1407-1415. 
Shahabi, A., & Malakouti, M. (2010). The effect of concentration and time of application of calcium chloride on texture and quality characteristics of red apples of Esfahan Semirom area. Journal of water and soil, 12(8). In Farsi.
Vetrekar, N. T., Gad, R. S., Fernandes, I., Parab, J. S., Desai, A. R., Pawar, J. D., & Umapathy, S. (2015). Non-invasive hyperspectral imaging approach for fruit quality control application and classification: case study of apple, chikoo, guava fruits. Journal of Food Science and Technology, 52(11), 6978-6989.
Wang, H., Peng, J., Xie, C., Bao, Y.,& Yong, He. (2015). Fruit Quality Evaluation Using Spectroscopy Technology: A Review. Sensors,15, 11889-11927.
Wang, J., Nakano, K., Ohashi, S., Kubota, Y., Takizawa, K., & Sasaki, Y. (2011). Detection of external insect infestations in jujube fruit using hyperspectral reflectance imaging. Biosystems Engineering, 108(4), 345-351.
Wang, N., & ElMasry, G. (2010). Bruise Detection of Apples using Hyperspectral Imaging. Hyperspectral Imaging for Food Quality Analysis and Control, 295-320.
Wang, S., Tang, J., &Cavalieri, R. )2001(. Modeling fruit internal heating rates for hot air and hot water treatments. Postharvest Biology and Technology, 22, 257-270.
Xing, J., Guyer, D., Ariana, D., & Lu, R. (2008). Determining optimal wavebands using genetic algorithm for detection of internal insect infestation in tart cherry. Sensing and Instrumentation for Food Quality and Safety, 2(3), 161-167.