تشخیص و جداسازی گره و میانگره در ساقه‌های نیشکر به صورت برخط با کمک بینایی ماشین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد دانشکده مهندسی زراعی و عمران روستایی، گروه مکانیک بیوسیستم، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

2 دانشگاه رامین خوزستان

چکیده

امروزه مواد خام زیستی به عنوان منبع انرژی تجدید پذیر، سوخت و غیره با توجه به بومی و در دسترس بودن مورد استفاده قرار گرفتند. میانگره حاوی گلوکان است و برای تولید الکل مناسب می­باشد. حال آنکه گره با درصد لیگنین و سلولز بالا برای شرکت‌هایی که نیاز به حرارت و انرژی دارند مناسب می­­باشد. بنابراین جداسازی اجزای مواد زیستی ارزش این مواد را افزایش خواهد داد. بعلاوه یکنواختی مواد اولیه عملیات کنترل و پردازش را کار آمدتر و عمر تجهیزات فرآوری را بهبود خواهد بخشید. هدف از این پژوهش جداسازی گره و میانگره به صورت خودکار است. به این منظور با استفاده از پردازش تصویر و با دانستن این موضوع که افت ناگهانی در مقادیر خاکستری، در امتداد محور اصلی قطعه­ای از ساقه نیشکر، می­تواند نشان­دهنده گره بر روی آن قطعه باشد، عملیات جداسازی صورت پذیرفت. بر اساس نتایج دقت سامانه بینایی ماشین بیش از 98%  به دست آمد.
 


کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Online detection and separation of nodes and internodes of sugarcane stalks using machine vision

چکیده [English]

In recent years biomass materials has been used, as potential source of renewable energy, fuel, and etc. due to their local availability. Internodes contain glucan therefore, they are suitable for the alcohol production; while nodes with a high percentage of lignin and cellulose content are more suited for companies that need heat and energy. Thus, separation of different components of biomass would increase their value.. In addition the uniformity of raw materials not only increases the performance of controlling and processing operations but also improves the working time of the processing equipment. The aim of this study is to separate nodes and internodes, automatically. To this end, the process of images was conducted based on To this end, the process of images was conducted based on the knowing the fact that sudden drop of gray level values, along the main axis of the sugarcane stalks, could be the indication of node. Concord to obtained result,, machine vision system accuracy was more than 98%.

کلیدواژه‌ها [English]

  • separation
  • Nodes
  • Internodes
  • image processing
Abbasgholipour, M., Omid, M., Keyhani, A. and Mohtasebi, S. 2011. Color image segmentation with genetic algorithm in a raisin sorting system based on machine vision in variable conditions. Expert Syst. Appl. 38, 3671–3678.
Brosnan, T. and Sun, D. W. 2002. Inspection and grading of agricultural and food products by computer vision systems – a review. Comput. Electron. Agric. 36, 193–213.
Brosnan, T. and Sun, D. W. 2004. Improving quality inspection of food products by computer vision – a review. J. Food Eng. 61, 3–16.
Du, C. J. and Sun, D. W. 2004. Recent developments in the applications of image processing techniques for food quality evaluation. Trends Food Sci. Tech. 15, 230–249.
Du, C. J. and Sun, D.W. 2006. Learning techniques used in computer vision for food quality evaluation: a review. J. Food Eng. 72, 39–55.
ElMasry, G., Cubero, S., Molt, E. and Blasco, J. 2012. In-line sorting of irregular potatoes by using automated computer-based machine vision system. J. Food Eng. 112, 60–68.
Gonzalez, R. C. Woods, R. E. and Eddins, S. L. 2009. Digital Image Processing Using MATLAB, vol. 2.
Hames, B. R., Thomas, S. R., Sluiter, A. D., Roth, C. J. and Templeton, D. W. 2003. Rapid biomass analysis. In: Biotech. Fuels Chem. Springer, pp. 5–16.
Hu, Z., Sykes, R., Davis, M. F., Charles Brummer, E. and Ragauskas, A. J. 2010. Chemical profiles of switchgrass. Bioresource Technol. 101, 3253–3257.
Igathinathane, C., Melin, S., Sokhansanj, S., Bi, X., Lim, C., Pordesimo, L. and Columbus, E. 2009a. Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets. Powder Technol. 196, 202–212.
Igathinathane, C., Pordesimo, L. and Batchelor, W. 2009b. Major orthogonal dimensions measurement of food grains by machine vision using imagej. Food Res. Int. 42, 76–84.
Igathinathane, C., Pordesimo, L., Columbus, E. P., Batchelor, W. D. and Sokhansanj, S. 2009c. Sieveless particle size distribution analysis of particulate materials through computer vision. Comput. Electron. Agric. 66, 147–158.
Igathinathane, C., Ulusoy, U. and Pordesimo, L., 2012. Comparison of particle size distribution of celestite mineral by machine vision Rvolume approach and mechanical sieving. Powder Technol. 215, 137–146.
Klasek, S., Womac, A., Yoder, D. and Hayes, D. 2006. Terminal velocity determination for component separation of biomass. In: American Society of Agricultural and Biological Engineers Annual International Meeting. Portland, Oregon, USA, pp. 9–12.
Kumar Pothula, A., Igathinathane, C., Kronberg, S. and Hendrickson, J. 2014. Digital image processing based identification of nodes and internodes of chopped biomass stems. Computers and Electronics in Agriculture. 105, 54-65.
Labbe, N., Philip, X. Y., Franklin, J. A., Womac, A. R., Tyler, D. D. and Rials, T.G. 2008. Analysis of switchgrass characteristics using near infrared techniques. BioResources 3, 1329–1348.
Leemans, V. and Destain, M. F. 2004. A real-time grading method of apples based on features extracted from defects. J. Food Eng. 61, 83–89.
Liu, L., Ye, X. P., Womac, A. R. and Sokhansanj, S. 2010. Variability of biomass chemical composition and rapid analysis using FT-NIR techniques. Carbohyd. Polym. 81, 820–829.
McCarthy, C., Hancock, N. and Raine, S. 2008. On-the-go machine vision sensing of cotton plant geometric parameters: first results. In: Mechatronics and machine vision in practice. Springer-Verlag, Berlin, Germany. 305-312.
McKendry, P. 2002. Energy production from biomass (part 1): overview of biomass. Bioresource Technol. 83, 37–46.
Mebatsion, H. and Paliwal, J. 2011. A fourier analysis based algorithm to separate touching kernels in digital images. Biosyst. Eng. 108, 66–74.
Moshashai, K., Almasi, M., Minaei, S., and Borghei, A. M. 2008. Identification of sugarcane nodes using image processing and machine vision technology. International Journal of Agricultural Research, 3(5), 357-364.
Wan, Y. N. 2002. Kernel handling performance of an automatic grain quality inspection system. Trans. ASAE 45, 369–377.
Wang, W. and Paliwal, J. 2006. Separation and identification of touching kernels and dockage components in digital images. Can. Biosyst. Eng. 48, 7.
Yamamoto, K., Guo, W. and Ninomiya, S. 2016. Node Detection and Internode Length Estimation of Tomato Seedlings Based on Image Analysis and Machine Learning. Sensors. 16:(7) 1044-1060.
Yan, L., Park, C. W., Lee, S. R. and Lee, C. Y. 2011. New separation algorithm for touching grain kernels based on contour segments and ellipse fitting. J. Zhejiang Univ. SC C 12, 54–61.
Ye, X. P., Liu, L., Hayes, D., Womac, A., Hong, K. and Sokhansanj, S. 2008. Fast classification and compositional analysis of cornstover fractions using fourier transform near-infrared techniques. Bioresource Technol. 99, 7323–7332.
Yore, M. W., Jenkins, B. M. and Summers, M. D. 2002. Cutting properties of rice straw. In: ASAE Annual International Meeting, Paper.
Zhang, G., Jayas, D. S. and White, N. D. 2005. Separation of touching grain kernels in an image by ellipse fitting algorithm. Biosyst. Eng. 92, 135–142.
Zhong, Q., Zhou, P., Yao, Q. and Mao, K. 2009. A novel segmentation algorithm for clustered slender-particles. Comput. Electron. Agric. 69, 118–127.