استفاده از رویکرد مدل‌سازی ساختاری تفسیری در ارائه مدل چابکی زنجیره توزیع تعاونی کمباین‌داران استان فارس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی ماشین های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 دانشگاه تهران

3 هیئت علمی دانشگاه تهران

چکیده

چابکی توانایی پاسخگویی سریع به تغییرات یکی از عوامل اصلی موفقیت و بقای شرکت­های تولیدی و خدماتی است. امروزه شرکت­ها دریافته­اند که چابکی برای بقا و رقابت­پذیری آنها ضروری است. در این پژوهش پس از شناسایی متغیرهای چابکی، با مدل‌سازی ساختاری تفسیری مدل چابکی ترسیم و با تحلیل MIC MAC نوع متغیرها مشخص گردید. انعطاف‌پذیری، ادغام فرآیندها و وظایف، توسعه مهارت­های کارکنان، به کارگیری IT و برنامه‌ریزی متناسب از عوامل مهم چابکی در زنجیره توزیع تعاونی کمباین‌داران استان فارس محسوب می­شوند. حساسیت و پاسخ­گویی به بازار و مشتری قدرت نفوذ و وابستگی زیادی دارد. کاهش هزینه­ها، رضایت مشتری، معرفی محصول جدید، سرعت انجام خدمات و کیفیت انجام خدمات دارای قدرت نفوذ کم و وابستگی زیادی هستند که نشان دهنده این است که بیشتر به سایر متغیرها وابسته هستند. نتایج تحقیق بیانگر آن است که ادغام فرآیند­ها و وظایف، سنگ زیربنای چابکی زنجیره توزیع می‌باشد. این بدین معناست که برای چابکی سامانه باید از این متغیر شروع کرد که زمینه برای چابک­شدن متغیر­های سطح بالاتر فراهم شود و این رویه تا رسیدن به رضایت مشتری ادامه پیدا کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Appling interpretive structural modeling approach to obtain distribution chain agility model for combine owners cooperative Fars province

نویسندگان [English]

  • Najmeh Tavakoli 1
  • Mohammad Sharifi 2
  • Asadollah Akram 3
1 Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering & Technology, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
2 University Of Tehran
3 Faculty Member in Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering & Technology, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Agility is known as quick response ability to the changes and also the main success and survival factor in manufacturing and service companies. Nowadays the companies know that the agility is essential for their survival and competitiveness. In this study, after identifying the parameters of agility, using structural modeling interpretative model was draws and the parameters were determined by MIC MAC analysis. Flexibility, integration processes and tasks, the development of staff skills, use of IT and appropriate planning are of important agility factors in the distribution chain of combine owners cooperative Fars province. Cost reduction, customer satisfaction, new product introduction, speed of service and quality of servicing has high dependence which shows more dependence to other variables.

کلیدواژه‌ها [English]

  • agility
  • Interpretive structural modeling
  • MIC MAC analysis
Agarwal, A., Shankar, R., Tiwari, M. K. (2007). Modeling agility of supply chain. Industrial marketing management36(4), 443-457.
Ahmadpour, A., Akbarpour-Shirazi, M., Razavi-Amiri, Z. (2009). using Multi-Attribute Decision Making Models in stock selection (accepted medicinal corporation in exchange valuable card of Tehran. Journal of exchange valuable card, 5, 5-38. (In Farsi).
Angilella, S., Corrente, S., Greco, S., Słowiński, R. (2014). MUSA-INT: Multicriteria customer satisfaction analysis with interacting criteria. Omega42(1), 189-200.
Asadi, H. Pirayesh far, Mostofi, M. (2006). Studying economic value of wheat losses according to available researches.  Agricultural engineering and natural resources, 4 (14), 46. (In Farsi).
Christopher, M. (2000). The agile supply chain: competing in volatile markets. Industrial marketing management29(1), 37-44.
Dickey, L. C., Parris, N., Craig, J. C., & Kurantz, M. J. (2002). Serial batch extraction of zein from milled maize. Industrial Crops and Products15(1), 33-42.
Fathi-Ashtiyani.A. (2010). Psychological tests. besat-Tehran press. (In Farsi).
Gillis, W.­, Castrogiovanni, G. J. (2012). The franchising business model: an entrepreneurial growth alternative. International Entrepreneurship and Management Journal8(1), 75-98.
Goldman, S. L., Nagel, R. N., Preiss, K. (1995). Book Excerpt: Agile competitors and virtual organizations. Manufacturing Review8(1), 59-67.
Gunasekaran, A., Lai, K. H., Cheng, T. E. (2008). Responsive supply chain: a competitive strategy in a networked economy. Omega36(4), 549-564.
Gunasekaran, A., Patel, C., Tirtiroglu, E. (2001). Performance measures and metrics in a supply chain environment. International journal of operations & production Management21(1/2), 71-87.
Jitesh Thakkar., S.G Deshmukh., A.D. Gupta., Rrvi Shankar (2007). Development of a balanced scorecard An integrated approach of Interpretive Structural Modeling and Analytic Network Process (ANP). International Journal of Productivity and Performance Management, 56(1), 25-59.
Kannan, G., Haq, A. N. (2007). Analysis of interactions of criteria and sub-criteria for the selection of supplier in the built-in-order supply chain environment. International Journal of Production Research45(17), 3831-3852.
Kazemi M., Karimi-Rahmat Abadi A, (2010). The study of interaction of the university's goals, but the era of using hybrid model of balanced point's card structural interpretation, modeling the 5th­ International conference on strategic management. (In Farsi)
Li D., O’Brien, C. (1999). Integrated disation modeling of supply chain efficiency; International Journal of Production  Economics, 59.
Mandal, A., Deshmukh, S. G. (1994). Vendor selection using interpretive structural modelling (ISM). International Journal of Operations & Production Management14(6), 52-59.
Martelo, S., Barroso, C., Cepeda, G. (2013). The use of organizational capabilities to increase customer value. Journal of Business Research66(10), 2042-2050.
Nishat Faisal, M., Banwet, D. K., Shankar, R. (2006). Supply chain risk mitigation: modeling the enablers. Business Process Management Journal12(4), 535-552.
Pfohl, H. C., Gallus, P., Thomas, D. (2011). Interpretive structural modeling of supply chain risks. International Journal of Physical Distribution & Logistics Management41(9), 839-859.
Power, D. J., Sohal, A. S., Rahman, S. U. (2001). Critical success factors in agile supply chain management-An empirical study. International journal of physical distribution & logistics management31(4), 247-265.
Ravi, V. Shankar, R. (2005); Anaiysis of interactions amongthe barring ofreverse logistic; Technological Forecasting and Social Changes, 72, 1011-1029.
Sharifi, M., Akram, A., Tavakoli, N. (2017). Evaluation and selection of the most important parameters in the distribution chain agility Combine Owners Cooperative Fars province. Iranian Journal of Biosystems Engineering, 48(2), 201-209. (In Farsi)
Sherehiy, B., Karwowski, W., Layer, J. K. (2007). A review of enterprise agility: Concepts, frameworks, and attributes. International Journal of industrial ergonomics37(5), 445-460.
Snedecor, G. W., W. G. Cochran. (1989). Statistical methods: Iowa State University Press.
Soti, A., Shankar, R., Kaushal, O. P. (2010). Modeling the enablers of Six Sigma using interpreting structural modeling. Journal of Modelling in Management5(2), 124-141.
Swafford, P. M., Ghosh, S., Murthy, N. (2006). The antecedents of supply chain agility of a firm: scale development and model testing. Journal of Operations Management24(2), 170-188.
Swafford, P. M., Ghosh, S., Murthy, N. (2008). Achieving supply chain agility through IT integration and flexibility. International Journal of Production Economics116(2), 288-297.
Talib, F., Rahman, Z., Qureshi, M. N. (2011). Analysis of interaction among the barriers to total quality management implementation using interpretive structural modeling approach. Benchmarking: An International Journal18(4), 563-587.
Tavakoli, N., Akram, A., Sharifi, M., Teimoury, E. (2016). Analysis of classification criteria in the combine-owners distribution chain agility by using SAW method, Fars Province. National Conference on Research and Technology Finding in Natural and Agricultural Ecosystems. October 19, 2016, Tehran, Iran. (In Farsi)
Tavakoli, N., Sharifi, M., Akram, A. (2017a). Identify and prioritize parameters affecting the distribution chain agility Combine Owners Cooperative Fars province using Electer technique. The 7th National Conference on Sustainable Agriculture and Natural Resources. July 12, 2017, Tehran, Iran. (In Farsi)
Tavakoli, N., Sharifi, M., Akram, A. (2017b). Performance evaluation of the most common multi criterion decision making techniques to rank the effective parameters in agility of distribution chain of combine owners in Fars province. Iranian Journal of Biosystems Engineering. (In Farsi)
Teece, D. J., Pisano, G., Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic management journal, 509-533.
Thakkar, J., Deshmukh, S. G., Gupta, A. D., Shankar, R. (2006). Development of a balanced scorecard: an integrated approach of interpretive structural modeling (ISM) and analytic network process (ANP). International Journal of Productivity and Performance Management56(1), 25-59.
Tizro, A. (2010).   The design of the supply chain model of structural modeling approach to agile steel joint stock company interpretation, Phd thesis, Tarbiat Modares University, Tehran, Iran. (In Farsi)
Tizro, A. Azar, A. Ahmadi, R., Rafiee, M. (2011). Presentation agility model of the Zob ahan stock supply chain. Journal of Industrial management, 3(7), 17-36. (In Farsi)
Warfield, J. N. (1974). Toward interpretation of complex structural models. IEEE Transactions on Systems, Man, and Cybernetics4(5), 405-417.
Yeung, A. C. (2008). Strategic supply management, quality initiatives, and organizational performance. Journal of Operations Management26(4), 490-502.
Yusuf, Y. Y., Sarhadi, M., Gunasekaran, A. (1999). Agile manufacturing: The drivers, concepts and attributes. International Journal of production economics62(1), 33-43.